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» A hermitian line bundle with connection.
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Electrodynamics on R”

Relevant:
> a metric

» a field strength F (2-form) satisfying Maxwell's equations
dF =0 and dxF=J.

Auxiliary structure:
» gauge potential A (1-form) satisfying dA = F.

» different choices of A are related by a gauge transformation,
/ 1 -1
A=A+ —-dgg
1

for a function g : R" — U(1).



Example: Charged Particle

» We describe the particle by a curve
¢:[0,1] — R".
For simplicity, we assume ¢(0) = ¢(1).
» The particle gathers a contribution of
Se(0) = § o°A
to its action.

» By Stokes’ Theorem, this contribution is gauge invariant.
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Electrodynamics on Curved Spacetime

What is different when one replaces R” by a general manifold M?

> depending on the topology of M it may be that no global
gauge potential A exists.

We can still work locally:

» Cover the manifold by open sets,
M= Ua.
acA

» The sets U, can be chosen topologically so good that there
exist local gauge potentials A, with dA, = F|y,.



» On two-fold intersections U, N Ug two local gauge potentials
are present: A, and Ag. They differ by a gauge transformation

1 _
Az =Aq+ 7 dgaggaﬂl.

» On three-fold intersections, we demand a consistency
condition:

Bay = 83~ * 8as-
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» What we can define is the exponential of this contribution:

exp (1S.(¢ Hexp< / P An(i )) 8a(i)a(i+1)(@(ti))

ti—

This is still enough to derive the equations of motion!



The Charged Particle on a Curved Spacetime

The particle is now described by a curve
¢ :[0,1] — M.

Can we define the contribution to its action?

> In general, no.

» What we can define is the exponential of this contribution:

N

ti
exp (iS.(4)) := [ [ exp (i /t‘_l ¢*Aa(i)> * Ba(i)a(i+1) (9(t7))

i=1
This is still enough to derive the equations of motion!

Is this contribution still gauge invariant?

> It is invariant under local gauge transformations

1 _ _
A=A, + B dhoht 8l = Bophy ' ha



Geometry: Line Bundles with Connection

Definition:

1. The collection L := {Aq, 8.3} is a hermitian line bundle
with connection of curvature F.

2. The collection {h,} is an equivalence L — L'.



Geometry: Line Bundles with Connection

Definition:
1. The collection L := {Aq, 8.3} is a hermitian line bundle
with connection of curvature F.

2. The collection {h,} is an equivalence L — L'.

Upshot:

» A 1-form gauge field is an equivalence class of hermitian
line bundles with connection.

» The curvature F of the connection is the field strength.

» The holonomy exp (iS;(¢)) of the connection describes the
coupling of charged particles to the field.
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For a fixed a field strength F, are there non-equivalent choices of
line bundles with connection of curvature F?

> In general, yes.

» Theorem: Equivalence classes of hermitian line bundles with
connection of curvature F are parameterized by the
cohomology group H*(M, U(1)).

If Fis any field strength, is there a line bundle with curvature F?
> In general: no.

» Theorem: There exists a line bundle with connection of
curvature F if and only if
/ FeZ
B

for any closed 2-dimensional submanifold B C M.



Relevance of Line Bundles

» Dirac’s magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic
monopole the electric charge?

Answer: For the field F of a monopole, no global gauge
potential can be chosen. We thus need an hermitian line
bundle with connection of curvature F. The existence of such
line bundles quantizes F.



Relevance of Line Bundles

» Dirac’s magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic
monopole the electric charge?

Answer: For the field F of a monopole, no global gauge
potential can be chosen. We thus need an hermitian line
bundle with connection of curvature F. The existence of such
line bundles quantizes F.

» Aharonov-Bohm effect:

Question: Electrons are affected by an ,,infinitely long and
thin" solenoid although the field strength is zero. Why?

Answer: The line bundle is, though flat, non-trivial.
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We leave particles and their gauge theories and come to strings.

What is a 2-form gauge field?
> It describes a gauge theory for strings.

What is geometry for a 2-form gauge field?

» A hermitian gerbe with connection.
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Strings in Curved Spacetime

Relevant:
> a metric
> a field strength H (3-form)

Simplified Situation:
> there is a global gauge potential B (2-form) with dB = H.
> a charged string ¢ : ¥ — M couples to the gauge field by

Su($) == /X &'B

In general, however, global gauge potentials do not exist.



If no global gauge potential B can be chosen, we work locally:

» We cover M with open sets U, with good topology. Then, we
can choose local gauge potentials B,.

» On two-fold intersections, there are two potentials present: B,
and Bg. They differ by a (1-form) gauge potential A,g:

Bg =B, + dAag.

> On three-fold intersections, three gauge potentials are present:
Aag, Agy and A, : they differ by a gauge transformation

1 -
ACW = Aﬂ'Y + Aaﬁ + T dgaﬁ'ygaﬁ:’[’y

> On four-fold intersections, we demand that these gauge
transformations satisfy the consistence condition

836 * 8aps = 8avs - BaBy-
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Geometry: Gerbes with Connection

Definition: The data {B., Aws,8a3y} is @ hermitian gerbe with
connection of curvature H.

Upshot:

» A 2-form gauge field is an equivalence class of hermitian
gerbes with connection.

» The curvature of the connection is the field strength H.

» The holonomy of the connection describes the coupling of
charged strings to the field.
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Example: Wess-Zumino-Witten Models

» M = G is a compact Lie group, and the field strength H is
given by

k
H:= ——tr(g~'dg)>.
- tt(g™dg)

» Question: Do gerbes with this curvature exist?
Answer: Depends on k:

e if G is simple and simply-connected for all k € Z.
o if G=S0(3) only for k € 2Z.

» Question: Are there inequivalent choices?
Answer: Depends on the topology of the group G:

e if G is simple and simply-connected, no.
o if G=50(4n)/Zsy, yes: two.



Recent Results that use the Geometry of Gerbes

» D-branes:

- twisted vector bundles (Kapustin, hep-th/9909089)
- gerbe modules (Gawedzki, hep-th/0406072)

» Unoriented string theories:
- Jandl structures (Schreiber-Schweigert-KW,
hep-th/0512283)
- Classification of unoriented WZW models
(Gawedzki-Suszek-KW, hep-th/0701071)

» Topological defect lines:

- Gerbe bimodules (Fuchs-Schweigert-KW,
hep-th/0703145)

> (in progress...) D-branes and orientifold planes in unoriented
string theories (Gawedzki-Suszek-KW).



