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I A hermitian line bundle with connection.
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Electrodynamics on Rn

Relevant:

I a metric

I a field strength F (2-form) satisfying Maxwell’s equations

dF = 0 and d ? F = J.

Auxiliary structure:

I gauge potential A (1-form) satisfying dA = F .

I different choices of A are related by a gauge transformation,

A′ = A +
1

i
dgg−1

for a function g : Rn → U(1).



Example: Charged Particle

I We describe the particle by a curve

φ : [0, 1] → Rn.

For simplicity, we assume φ(0) = φ(1).

I The particle gathers a contribution of

SF (φ) =

∮
φ∗A

to its action.

I By Stokes’ Theorem, this contribution is gauge invariant.
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Electrodynamics on Curved Spacetime

What is different when one replaces Rn by a general manifold M?

I depending on the topology of M it may be that no global
gauge potential A exists.

We can still work locally:

I Cover the manifold by open sets,

M =
⋃

α∈A

Uα.

I The sets Uα can be chosen topologically so good that there
exist local gauge potentials Aα with dAα = F |Uα .



I On two-fold intersections Uα ∩ Uβ two local gauge potentials
are present: Aα and Aβ . They differ by a gauge transformation

Aβ = Aα +
1

i
dgαβg−1

αβ .

I On three-fold intersections, we demand a consistency
condition:

gαγ = gβγ ∙ gαβ .
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I What we can define is the exponential of this contribution:

exp (iSL(φ)) :=
N∏

i=1

exp

(

i
∫ ti

ti−1
φ∗Aα(i)

)

∙ gα(i)α(i+1)(φ(ti ))

This is still enough to derive the equations of motion!
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φ : [0, 1] → M.

Can we define the contribution to its action?

I In general, no.

I What we can define is the exponential of this contribution:

exp (iSL(φ)) :=
N∏

i=1

exp

(

i
∫ ti

ti−1
φ∗Aα(i)

)

∙ gα(i)α(i+1)(φ(ti ))

This is still enough to derive the equations of motion!

Is this contribution still gauge invariant?

I It is invariant under local gauge transformations

A′
α = Aα +

1

i
dhαh−1

α g ′
αβ = gαβh−1

β hα
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Geometry: Line Bundles with Connection

Definition:

1. The collection L := {Aα, gαβ} is a hermitian line bundle
with connection of curvature F .

2. The collection {hα} is an equivalence L → L′.

Upshot:

I A 1-form gauge field is an equivalence class of hermitian
line bundles with connection.

I The curvature F of the connection is the field strength.

I The holonomy exp (iSL(φ)) of the connection describes the
coupling of charged particles to the field.
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For a fixed a field strength F , are there non-equivalent choices of
line bundles with connection of curvature F?

I In general, yes.

I Theorem: Equivalence classes of hermitian line bundles with
connection of curvature F are parameterized by the
cohomology group H1(M, U(1)).

If F is any field strength, is there a line bundle with curvature F?

I In general: no.

I Theorem: There exists a line bundle with connection of
curvature F if and only if

∫

B
F ∈ Z

for any closed 2-dimensional submanifold B ⊂ M.



Relevance of Line Bundles

I Dirac’s magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic
monopole the electric charge?

Answer: For the field F of a monopole, no global gauge
potential can be chosen. We thus need an hermitian line
bundle with connection of curvature F . The existence of such
line bundles quantizes F .



Relevance of Line Bundles

I Dirac’s magnetic Monopoles:

Question: Why quantizes the existence of a sole magnetic
monopole the electric charge?

Answer: For the field F of a monopole, no global gauge
potential can be chosen. We thus need an hermitian line
bundle with connection of curvature F . The existence of such
line bundles quantizes F .

I Aharonov-Bohm effect:

Question: Electrons are affected by an
”
infinitely long and

thin“ solenoid although the field strength is zero. Why?

Answer: The line bundle is, though flat, non-trivial.
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We leave particles and their gauge theories and come to strings.

What is a 2-form gauge field?

I It describes a gauge theory for strings.

What is geometry for a 2-form gauge field?

I A hermitian gerbe with connection.
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Strings in Curved Spacetime

Relevant:

I a metric

I a field strength H (3-form)

Simplified Situation:

I there is a global gauge potential B (2-form) with dB = H.

I a charged string φ : Σ → M couples to the gauge field by

SH(φ) :=

∫

Σ
φ∗B

In general, however, global gauge potentials do not exist.



If no global gauge potential B can be chosen, we work locally:

I We cover M with open sets Uα with good topology. Then, we
can choose local gauge potentials Bα.

I On two-fold intersections, there are two potentials present: Bα

and Bβ . They differ by a (1-form) gauge potential Aαβ :

Bβ = Bα + dAαβ .

I On three-fold intersections, three gauge potentials are present:
Aαβ , Aβγ and Aαγ : they differ by a gauge transformation

Aαγ = Aβγ + Aαβ +
1

i
dgαβγg−1

αβγ

I On four-fold intersections, we demand that these gauge
transformations satisfy the consistence condition

gβγδ ∙ gαβδ = gαγδ ∙ gαβγ .
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Geometry: Gerbes with Connection

Definition: The data {Bα, Aαβ , gαβγ} is a hermitian gerbe with
connection of curvature H.

Upshot:

I A 2-form gauge field is an equivalence class of hermitian
gerbes with connection.

I The curvature of the connection is the field strength H.

I The holonomy of the connection describes the coupling of
charged strings to the field.
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Example: Wess-Zumino-Witten Models

I M = G is a compact Lie group, and the field strength H is
given by

H :=
k

12π
tr(g−1dg)3.

I Question: Do gerbes with this curvature exist?
Answer: Depends on k :

• if G is simple and simply-connected for all k ∈ Z.
• if G = SO(3) only for k ∈ 2Z.

I Question: Are there inequivalent choices?
Answer: Depends on the topology of the group G :

• if G is simple and simply-connected, no.
• if G = SO(4n)/Z2, yes: two.



Recent Results that use the Geometry of Gerbes

I D-branes:

- twisted vector bundles (Kapustin, hep-th/9909089)
- gerbe modules (Gawȩdzki, hep-th/0406072)

I Unoriented string theories:

- Jandl structures (Schreiber-Schweigert-KW,
hep-th/0512283)

- Classification of unoriented WZW models
(Gawȩdzki-Suszek-KW, hep-th/0701071)

I Topological defect lines:

- Gerbe bimodules (Fuchs-Schweigert-KW,
hep-th/0703145)

I (in progress...) D-branes and orientifold planes in unoriented
string theories (Gawȩdzki-Suszek-KW).


