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Abstract

Parallel transport in a fibre bundle with connection can be seen as an
assignment of fibres to points and of morphisms between fibres to paths,
together defining a functor. I describe a characterization of these functors
resulting in a category of “transport functors” that is equivalent to the cat-
egory of fibre bundles with connection.

Let M be a smooth manifold and let P be a principal G-bundle over M with
connection ω.

• Each fibre Px is a G-torsor, i.e. a smooth manifold with a smooth, free and
transitive G-action from the right.

• The parallel transport along a curve γ : x y is a G-equivariant smooth
map τγ : Px Py.

What are the abstract properties of these maps τγ?

1. For γ1 : x y and γ2 : y z composable paths, τγ2◦γ1 = τγ2 ◦ τγ1 .

2. For idx the constant path at a point x, τidx = idPx .

Observation. These are the axioms of a functor

traP,ω : P1(M) G-Tor,

where
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• P1(M) is the path groupoid of M : its objects are the points in M , and its
morphisms are thin homotopy classes of paths in M .

• G-Tor is the category of G-torsors.

Here we have used the well-known fact that the parallel transport maps τγ only
depend on the thin homotopy class of γ.
In order to make the definition of the path groupoid a bit more precise, let us
denote by PM the set of paths in M : smooth maps γ : [0, 1] M with sitting
instants. On this set there is an equivalence relation ∼ called “thin homotopy”
according to which two paths γ1 and γ2 are equivalent if there exists a smooth
homotopy whose differential is at most rank 1. Then, the quotient PM/∼ is the
set of morphisms of P1(M).

Question. For which functors

F : P1(M) G-Tor

exists a principal G-bundle P with connection ω such that F = traP,ω?

To approach this question, let us restrict first to trivial bundles.

A trivial principle G-bundle with connection over M is nothing but a 1-form A ∈
Ω1(M, g). Its functor

traG×M,A : P1(X) G-Tor (1)

has the particular form that every point x ∈ M is mapped to G, as a G-torsor
over itself. Hence, every parallel transport map τγ : G G can be identified
with a group element. The category G-Tor is thus much too large for this trivial
situation.

Let us introduce a new category which is adapted to this particular situation. We
call this category BG: it has a single object, and its morphisms are the group
elements of G. We have just identified the parallel transport of a trivial principal
G-bundle with connection A with a functor

trivA : P1(X) BG. (2)

Remark. A concise way to specify the relation between the 1-form A and the
functor trivA is the path-ordered exponential

trivA(γ) = P exp

(∫ 1

0

γ∗A

)

which stands for the solution of the differential equation one has to solve to com-
pute the parallel transport.
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The relation between the functors (1) and (2) is given by the functor

i : BG G-Tor

that sends the single object of BG to G, regarded as a G-torsor. Then, we have a
commutative diagram:

P1(M)

trivA

traG×M,A

G-Tor

BG i

New question. For which functors F : P1(M) BG exists a 1-form A ∈
Ω1(M, g) such that F = trivA?

Observation: the adapted target category BG is a Lie category, in contrast to
G-Tor. We can thus put a smoothness condition on the functor F .

Definition 1.

1. A plot is a map c : U PM defined on a smooth manifold U , such that
the composite

U × [0, 1]
c×id

PM × [0, 1] ev
M (3)

is a smooth map.

2. A functor F : P1(M) BG is called smooth, if for every plot c the com-
posite

U
c

PM
pr

PM/∼
F

G

is a smooth map.

Remark. The set PM/∼ can be regarded a diffeological space. The definition
above is equivalent to saying that F : PM/∼ G is a diffeological map.

Lemma 2.

1. The functor trivA : P1(M) BG associated to a 1-form A is smooth.

2. The assignment

Ω1(M, g) Funct∞(P1(M),BG) : A trivA

is a bijection.
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Proof. Consider a map c : U PM so that the composite (3) is smooth. For
p ∈ U , the value trivA(c(u)) is the solution of an ordinary differential equation
which depends smoothly on u. Hence, also the solution is a smooth function in u.

The bijection is shown by defining in inverse, i.e. a 1-form A out of a smooth
functor F . Let γ : R M be a smooth curve, and define c : [0, 1] PM
where c(t) is the path c(t)(τ) := γ(tτ). This makes (2) smooth, so that also
Fγ := F ◦ c : [0, 1] G is a smooth map, and Fγ(0) = 1. Then define

Aγ(0)(γ̇(0)) := −
∂

∂t

∣
∣
∣
∣
0

Fγ ∈ g.

This is independent of the choice of γ, and yields a globally defined differential
form. �

Lemma 2 solves the trivial part of the question we started with: a functor F :
P2(M) G-Tor is the transport functor of a trivial principal G-bundle with
connection, if and only if it is of the form

F = i ◦ triv

for a smooth functor triv : P2(M) BG.

Now we go on with the general situation. Since we know which functors stand for
trivial principal G-bundles, we mimic the definition of a local trivialization.

Definition 3. A local trivialization of a functor F : P1(M) G-Tor is

1. a cover of M by open sets Uα,

2. functors trivα : P1(Uα) BG and

3. natural equivalences

P1(Uα)

trivα

F |Uα
G-Tor.

BG i

tα

The natural equivalences tα induce natural equivalences

gαβ := tβ ◦ t−1
α : i ◦ trivα|Uα∩Uβ

i ◦ trivβ|Uα∩Uβ
,
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the“transition transformations” of the transport functor. These satisfy the cocycle
condition, i.e. gαα = id, and all diagrams

i ◦ trivβ

gβγ

i ◦ trivα

gαβ

gαγ
i ◦ trivγ

(4)

of natural equivalences are commutative. A collection (trivα, gαβ) satisfying (4) is
called descent data .

Definition 4. Descend data (trivα, gαβ) is called smooth, if the functors trivα are
smooth, and if there exist smooth maps

g̃αβ : Uα ∩ Uβ G

such that all the diagrams

Uα ∩ Uβ
gαβ

g̃αβ

Mor(G-Tor)

G
i

are commutative.

The concept of local trivializations and smooth descent data makes sense in a more
general setup:

1. one can take any Lie groupoid Gr instead of BG.

2. one can take any target category T instead of G-Tor.

3. one can take any functor i : Gr T .

Definition 5. A transport functor on M with Gr-structure is a functor

tra : P1(M) T

which admits a local trivialization with smooth descent data.

Returning to our particular example, and answering the above question, we have

Theorem 6.

1. The functor traP,ω defined from a principal G-bundle P with connection ω,
is a transport functor with BG-structure.
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2. Moreover, the functor

G-Bun∇(M) Trans1
BG(M,G-Tor) : (P, ω) traP,ω

is surjective, full and faithful; in particular, an equivalence of categories.

Proof. We sketch only 1. here: Consider a local trivialization of the principal
bundle, consisting of open sets Uα and smooth G-equivariant bundle maps φα :
Uα×G P . We have induced sections sα : Uα P defined by sα(x) := φ(x, 1).
The pullbacks

Aα := s∗αω ∈ Ω1(Uα, g)

define by Lemma 2 the smooth functors trivα : P1(Uα) BG; these are the first
ingredients of a local trivialization.
The natural equivalences tα : traP,ω|Uα i ◦ trivα are defined pointwise by

tα(x) := φ−1
α |Px : Px G

for x ∈ Uα, which is a morphism in G-Tor. To verify the commutativity of the
naturality square

Px

tα(x)

τγ

G

trivα(γ)

Py
tα(y)

G

for a morphism γ : x y in P1(Uα) one checks that the way how trivα(γ)
is computed corresponds to the way how τγ is computed usually. Finally, the
associated transition transformations gαβ factor through the functor i by the
ordinary transition functions g̃αβ : Uα ∩ Uβ G, which are smooth. �

Advantages. Describing fibre bundles with connection by transport functors has
three main advantages:

1. More general classes of fibre bundles can be cooked up from the concept of
a transport functor, for instance groupoid bundles with connection.

2. Transport functors on M induce tautologically functions on the loop space
LM , since LM PM .

3. Transport functors have an evident categorification that leads to a system-
atical approach to connections on gerbes. This is the content of part II of
this series.
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