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Overview

1. Motivation: Higher gauge theory

2. Two ways towards higher dimensional parallel transport

3. Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

4. Evident categorification: Transport 2-functors

5. One consequence: Holonomy of non-abelian gerbes



Motivation: Higher gauge theory

I Point-like particles: motion along a path γ : [0, 1] → M
couples to the parallel transport

τγ : Eγ(0) → Eγ(1)

of a connection ∇ in a fibre bundle E over M.

I String theory: the path γ is replaced by a surface φ : Σ → M.

I Questions:

1. What is the geometrical structure that replaces the fibre
bundle E and the connection ∇?
→ "gerbe with connection"

2. Surfaces can be un-orientable! What are the implications
for these gerbes?
→ "Jandl gerbes" (Schreiber-Schweigert-KW ’05)



Two ways towards higher dimensional parallel transport

I First way: (Brylinski ’93, Murray ’95, Breen-Messing ’03,
Bartels ’06, etc.)

1. Categorify a fibre bundle.
2. Categorify a connection in a fibre bundle.
3. Find out what the parallel transport of such a connection

is.

Success: parallel transport along closed surfaces (holonomy) in
the "abelian case".

I Our Alternative (this talk):

1. Describe the parallel transport of a connection in a fibre
bundle without using the notion of a connection in a fibre
bundle.

2. Categorify this!

Success: general framework for gerbes with connection and
their parallel transport.



Two ways towards higher dimensional parallel transport

These two ways fit into a "commutative diagram"

Fibre
bundles

categorification
Gerbe

Connection in
a fibre bundle

Connection
on a gerbe

Parallel Transport
along paths this talk

Parallel Transport
along ??



Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

Urs Schreiber, KW "Parallel Transport and Functors",
[arxiv:0705.0452]

Consider a principal G -bundle P over M with connection.

(a) Its parallel transport has the structure of a functor

F : P1(M) → G -Tor

between two categories:

1. P1(M) is the path groupoid of M, with

I Objects: points of M
I Morphisms: thin homotopy classes of smooth paths

2. G -Tor is the category of G -torsors, with

I Objects: manifolds with smooth G -action
I G -equivariant smooth maps.



Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

(b) Question: how can we characterize parallel transport functors
among all functors

F : P1(M) → G -Tor ?

Answer: impose the following two conditions.

1. F is locally trivial

2. Its descent data is smooth

We call functors with these properties transport functors.



Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

(c) We call a functor

F : P1(M) → G -Tor

locally trivial, if there exist

1. a suitable covering π : U → M (
”
surjective submersion“)

2. a functor triv : P1(U) → G -Tor
3. a natural equivalence

P1(U)
π∗

triv

P1(M)

t F

BG
i

G -Tor

with
I BG is the groupoid associated to the group G
I i : BG → G -Tor is the functor which regards G as a

G -torsor over itself.



Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

(d) We say that a local trivialization (π : U → M, triv, t) has
smooth descent data, if

1. the functor
triv : P1(U) → BG

is smooth: internal to the category of diffeological spaces.

Key observation: the path groupoid P1(M) is a category
internal to diffeological spaces.

2. a certain smoothness condition on t is satisfied: it comes
from a smooth function g : U ×M U → G .



Parallel transport of a connection in a fibre bundle
without connections in a fibre bundle

(e) Our results:

Theorem A: There is a canonical equivalence of categories

{
Transport functors

F : P1(M) → G -Tor

}
∼=
{

Principal G -bundles
with connection over M

}
.

Proof: reduce it locally to a statement on trivial principal
G -bundles with connection, i.e. g-valued 1-forms:

Theorem B: There is a canonical equivalence of categories

{
Smooth functors

triv : P1(U) → BG

}
∼= Ω1(U, g).

Theorem A generalizes further to vector bundles, groupoid
bundles...



Evident categorification: Transport 2-functors
Urs Schreiber, KW "Connections in non-abelian Gerbes and their
Holonomy", [arxiv:0808.1923]

(a) First step: categorify the path groupoid P1(M).

The path 2-groupoid P2(M) is defined in the following way:

I Objects: points in M

I 1-morphisms: thin homotopy
classes of smooth paths





like for P1(M)

I 2-morphisms: thin homotopy classes of smooth
homotopies between paths:

x

γ1

γ2

Σ y

These homotopies between paths are the surfaces along which
we perform parallel transport!



Evident categorification: Transport 2-functors

(b) Second step: categorify the category G -Tor.

For the purposes of this talk, we restrict ourselves to the case
of "S1-gerbes".

Then, we consider 2-functors

F : P2(M) → B(S1-Tor)

with

I P2(M) the path 2-groupoid of M

I BS1-Tor the 2-category associated to the monoidal
category of S1-torsors.



Evident categorification: Transport 2-functors

(c) Third step: categorify local triviality and smoothness
conditions on the descent data of a 2-functor

F : P2(M) → B(S1-Tor).

We call these functors transport 2-functors.

The conditions imply the existence of

I a covering π : U → M

I a smooth 2-functor triv : P2(U) → BBS1

I a transport functor g : P1(U ×M U) → S1-Tor

I ...



Evident categorification: Transport 2-functors

Question: do transport 2-functors make our diagram
"commutative" ?

Fibre
bundles

categorification
Gerbe

Connection in
a fibre bundle

Connection
on a gerbe

Transport functors
X

Transport 2-functors

Answer: they do!



Evident categorification: Transport 2-functors

(d) Our results:

Theorem C: There is a canonical equivalence of 2-categories

{
Transport 2-functors

F : P2(M) → B(S1-Tor)

}
∼=

{
S1-bundle gerbes with

connection over M

}

Proof: translate the descent data (π, triv, g , ...) of a transport
2-functor into "geometrical data":

smooth functor
triv : P2(U) → BBS1 7−→ B ∈ Ω2(U)

transport functor
g : P1(U ×M U) → S1-Tor

Thm A
7−→

Principal
S1-bundle with
connection over

U ×M U

... 7−→ ...






this is a
bundle
gerbe w.
connec-
tion



Evident categorification: Transport 2-functors

(e) Further results show that transport 2-functors reproduce:

I non-abelian bundle gerbes

I Breen-Messing gerbes

I non-abelian differential cohomology



One Consequence: Holonomy of non-abelian Gerbes

(a) Consider a transport functor F : P1(M) → G -Tor, and an
oriented closed line S ⊂ M.

I To compute the holonomy of F around S , we have to
regard S as a path in M, i.e. a morphism

γ : x → x

in P1(M), chosen compatible with the orientation of S .

I The holonomy is then F (γ) ∈ Mor(G -Tor).

Remark: unless G is abelian, it not possible to identify
F (γ) with a group element.

I The holonomy depends on the choice of the base point
x ∈ S , but in a "controlled way".



One Consequence: Holonomy of non-abelian Gerbes

(b) Consider now a transport 2-functor F : P2(M) → T , and an
oriented closed surface S ⊂ M.

I To compute the surface holonomy of F around Σ, we
have to regard S as a 2-morphism in P2(M).

I One can always arrange this 2-morphism to be of the form

Σ : γ ⇒ idx

for a base point x ∈ S and a closed path γ : x → x .

I The surface holonomy is then F (Σ) ∈ 2-Mor(T ).

Theorem D: The surface holonomy F (Σ) depends on the
choice of a base point x and of a path γ, but in a "controlled
way".



Conclusions

I We have formalized the parallel transport of a connection in a
fibre bundle, and obtained the concept of a transport functor.

I The categorification of this concept provides an alternative
way to understand gerbes with connection.

I It coincides with all known definitions of gerbes with
connection, and prescribes what exactly the parallel transport
of a gerbe with connection is.


