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1 Introduction
From the theory of hermitian line bundles with connection we single out
one interesting aspect: such a line bundle L → M assigns to each loop
γ : S1 → M a certain complex number holL(γ) in U(1) which is called the
holonomy of L around γ. This assignment has many properties, and we will
gradually encounter some of them during this article. It is worthwhile to
specify three of them here, which will turn out to be analogous for surface
holonomy. To start with, the holonomy of L measures the curvature of L in
the following way: for an embedded two-dimensional submanifold D of M
with parameterized boundary ∂D one finds

exp

(∫
D

curv(L)

)
= holL(∂D).

This equality can be seen as an improvement of Stokes’ Theorem in two
dimensions, ∫

D

F =

∫
∂D

ρ

which expresses the integral of the closed 2-form F by something on the
boundary, just like the above formula for the integral of the curvature of
the line bundle L. However, Stokes’ Theorem is restricted to exact 2-forms
F = dρ whose cohomology class [F ] ∈ H2(M, R) vanishes. Our improvement
allows us at the price of exponentiation not only to take 2-forms with trivial
cohomology class, but also – and more general – 2-forms whose class lies in
the image of the homomorphism Hk(M, Z) → Hk(M, R). Those 2-forms F
– which we shall call forms with integral class – arise as the curvature of a
hermitian line bundle L with connection. Then,∫

D

F = ln (holL(∂D)) mod Z
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generalizes Stokes’ Theorem.
A second reason why holonomy is interesting lies in understanding the

assignment γ 7→ holL(γ) as a U(1)-valued function holL : LM → U(1) on the
loop space LM that consists of all smooth loops S1 → M . The loop space
can canonically be endowed with the structure of an infinite dimensional
manifold, so that the map holL becomes smooth [Bry93]. One can consider
going in the other direction, when one is concerned with a smooth U(1)-
valued function on the loop space and is able to express it as the holonomy
of a hermitian line bundle with connection over the – finite dimensional –
manifold M .

Also of importance is the application of line bundles in physics: a her-
mitian line bundle L → M with connection offers a natural description of
a U(1)-gauge theory. On the quantum level, such a theory can be defined
by assigning a complex number to each particle moving (on a closed line)
through the target space M ; this number acts as an amplitude in some path
integral. If a particle moves on a circle γ : S1 → M , its amplitude is given
by

A(γ) = eSkin(γ) · holL(γ),

where Skin(γ) is a kinetic term, and the holonomy expresses the coupling to
the gauge field. The line bundle L comes up with all features you would
expect from a gauge field: its curvature is a 2-form F and may be called
the field strength of the gauge field. The second Bianchi identity dF = 0
coincides with one of Maxwell’s equations, and – last but not least – the fact
that F has an integral class is nothing but Dirac’s quantization condition for
the electric charge.

The question for an appropriate concept of surface holonomy has similar
origins:

• it could provide a generalization Stokes’ Theorem in three dimensions
similar to that in two dimensions indicated above.

• it could be used in string theory to couple strings to non-trivial back-
ground fluxes, analogous to the coupling of a point particle to a gauge
field.

• it could also provide actions for 3-form gauge fields in certain (classical)
gauge theories.

• it could provide a way to describe structure on the loop space by struc-
ture on a finite-dimensional space, very much in the same way like
smooth U(1)-valued functions may be interpreted as the holonomy of
a hermitian line bundle with connection over M .
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Let us pick out the first two points and describe how they are related to
surface holonomy. The generalization of Stokes’ Theorem is obvious: if H
is a 3-form on a three-dimensional manifold B, which may be not exact but
with integral class, its integral over B could be expressed as (the logarithm
of) the holonomy around the surface Σ = ∂B.

In fact, this is exactly a question which arises in two-dimensional con-
formal field theory, when studying non-linear sigma models on a Lie group
G. Such a model can be defined by amplitudes A(φ) for some path integral,
where φ is a map from a closed complex surface Σ – the worldsheet – into
the target space G of the model. In [Wit84], Witten gives the following defi-
nition for G = SU(2). Σ is the boundary of a three dimensional manifold B,
and because the homotopy groups πi(SU(2)) vanish for i = 1, 2, every map
φ : Σ → M can be extended into the interior B to a map Φ : B → G. From
the theory of compact, simple, connected and simply connected Lie groups it
is known that the Ad-invariant trilinear form k〈−, [−,−]〉 on the Lie algebra
su(2) induces a closed, bi-invariant 3-form H on SU(2) with integral class,
provided k is an integer. Witten showed that – due to the integrality of H –

A(φ) := exp

(
Skin(φ) +

∫
B

Φ∗H

)
neither depends on the choice of B nor on the choice of the extension Φ, so
that he obtained a well-defined amplitude. Here Skin(φ) is a kinetic term, and
with a certain relative normalization this model is called the Wess-Zumino-
Witten model on G at level k.

Now, if we could express the integral of Φ∗H over B by something on
the boundary Σ – for instance via a generalization of Stokes’ Theorem – the
definition of the amplitude A(φ) would be independent of conditions on the
existence of the extension Φ, in particular of the simply-connectedness of G.
It would hence provide a proper definition of Wess-Zumino-Witten models
on arbitrary simple and compact Lie groups.

Acknowledgements. I thank U. Schreiber and C. Schweigert for the
many discussions during the preparation of this article, and J. Fjelstad and
again C. Schweigert for useful remarks and criticism.

2 Gerbes

To define surface holonomy, we first need a mathematical object which plays
the role of the hermitian line bundle with connection. Such an object is
collectively called gerbe with connective structure.
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What makes gerbes a bit mysterious is that there are numerous definitions
which look outmost different. To give an impression we show some examples
of the different manifestations of gerbes and their connective structures.

Gerbes as stacks. This is the original definition given in 1971 by J. Gi-
raud with a view to non-abelian cohomology [Gir71]. A stack is a
fibred category satisfying a gluing (or descent) axiom. According to
Giraud, a gerbe is a stack, whose fibres are groupoids and satisfy a
certain transitivity and non-emptiness condition, also see [Moe02]. As
an important characterization of a gerbe, Giraud defines the band of a
gerbe, a certain sheaf of groups.

The definition of a connective structure on a gerbe in this sense was
given thirty years later by L. Breen and W. Messing [BM05], who con-
sidered gerbes with arbitrary bands living over a scheme.

Gerbes as Cohomology Classes. Around 1972, P. Deligne invented a
cohomology theory which is now called Deligne cohomology [Del91,
Bry93]. It is build up on cochain complexes

0 // D0(n)
D // D1(n)

D // . . . D // Dk(n) ,

one for each natural number n. Deligne was originally interested in al-
gebraic geometry, and realized that the cohomology group H1(M,D(1))
classifies hermitian line bundles with connection [Del91].

A class in the cohomology group H2(M,D(2)) can be seen as a U(1)-
banded gerbe with connective structure in the sense that it provides
a definition of holonomy around surfaces. This was shown by K.
Gawȩdzki and applied to topological field theory [Gaw88]. Gawȩdzki
also showed that gerbes are related to structure on the loop space,
namely to a line bundle, which is obtained by a so-called transgression
procedure.

Deligne cohomology provides a natural way to see gerbes with con-
nective structure in a hierarchy of objects, starting with U(1)-valued
functions, hermitian line bundles with connection and gerbes with con-
nective structure, and which is continued by n-gerbes which are classi-
fied by Hn+1(M,D(n + 1)).

Gerbes as Sheaves of Groupoids. This concept is strongly related to the
original one of a certain kind of stack, and defines a gerbe over a man-
ifold M by an assignment

U 7→ G(U)
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of a groupoid G(U) to any open subset U of M . It is developed in great
detail in J.-L. Brylinski’s book [Bry93]. Analogous to the gluing axiom
of a sheaf, gluing axioms for such a gerbe a given. For C×-banded
sheaves of groupoids, Brylinski develops the definition and properties
of a connective structure. He gives precise relations and classification
result between sheaves of groupoids and Deligne cohomology. Further-
more he constructs a line bundle over the loop space and shows that it
coincides with the one Gawȩdzki constructed from Deligne cohomology.

Gerbes as Bundle Gerbes. The concept of a sheaf of groupoids and even
more the one of a connective structure on it is quite general but also
quite complex. For some purposes, e.g. for the definition of holonomy
and for applications in conformal field theory, it is sufficient to use a
simplified version – simplified in the sense that it just uses well-known
geometric structure like line bundles and differential forms. For U(1)-
or C×-banded gerbes, M. K. Murray invented bundle gerbes [Mur96],
which we will use in this article to develop surface holonomy. As we will
learn, bundle gerbes admit a very simple and natural definition of a con-
nective structure. To make contact to other concepts of gerbe, we will
see, that every bundle gerbe induces a sheaf of groupoids, and that their
isomorphism classes are in bijection to the Deligne cohomology group
H2(M,D(2)). Bundle gerbes have also been used in two-dimensional
conformal field theory [GR02, Gaw05, SSW05].

Gerbes defined on open Covers. Closely related to bundle gerbes are
gerbes defined on open covers [Hit01], although bundle gerbes are a
bit more general.

Gerbes as 2-Bundles. A somewhat different approach to surface holon-
omy is by categorification of a vector bundle with connection. This
leads to the concept of a 2-bundle with certain additional structure
[BS04]. This approach also covers gerbes with non-abelian bands.
Furthermore it realizes consequently the 2-categorial nature of gerbes,
which we will also discover during this article.

For the purposes of this article we consider gerbes with band U(1), also
called abelian (hermitian) gerbes. Accordingly we drop the qualifier hermi-
tian for gerbes and for line bundles to improve the readability.
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3 From Line Bundles to Bundle Gerbes
As indicated before, bundle gerbes are built up of line bundles and differential
forms. One of basic features of a line bundle L → M is that it is locally
trivializable. This is usually stated with respect to an open cover, but here
we state it with respect to a covering π : Y → M . From any open cover
{Vi}i∈I of M one can produce such a covering by defining Y as the disjoint
union of the sets,

Y =
⊔
i∈I

Vi,

and π as patched together from the inclusions Vi ↪→ M . Locally trivializable
means that there is a covering π : Y → M and a commutative diagram

Y × C //

��

L

��
Y π

// M .

A local trivialization defines a transition function g : Y [2] → U(1), where
Y [k] denotes the k-fold fibre product of Y with itself. The transition function
satisfies the cocycle condition

π∗12g · π∗23g = π∗13g (1)

over Y [3], where π12 : Y [3] → Y [2] are the projections on the respective
components. If Y comes from on open cover, Y [k] is the disjoint union of all
k-fold intersections of the open sets Vi. Accordingly, the transition function
g decomposes in functions gij : Vi ∩ Vj → U(1), and the cocycle condition
becomes gij · gjk = gik as functions on Vi ∩ Vj ∩ Vk.

Bundle gerbes don’t have a total space as line bundles do. For the defi-
nition of a bundle gerbe we step in after having locally trivialized, i.e. after
having chosen a covering π : Y → M ,

?

��
Y π

// M .

Now we define the bundle gerbe analogous to what remains of the locally
trivialized line bundle. According to our remarks about Deligne cohomology,
U(1)-valued functions, hermitian line bundles with connection and gerbes
with connective structure form a certain series of objects. Now we move
up one step: instead of a transition function on Y [2], we take a line bundle
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L → Y [2]. The next steps are predicted: because we can’t multiply line
bundles like the pullbacks of the transition function g in (1), the cocycle
condition has to be relaxed to an isomorphism

µ : π∗12L⊗ π∗23L → π∗13L

of line bundles over Y [3] – called the groupoid multiplication. To capture
an essential aspect of the multiplication of functions, we demand that this
isomorphism is associative.

It is straightforward to define a connective structure on a bundle gerbe.
Consider first a connection on a line bundle L → M . In a local trivialization
π : Y → M , this connection defines a 1-form A ∈ Ω1(Y ), which is related to
the transition function g by

g−1dg = π∗2A− π∗1A.

For the bundle gerbe, we take a connection on the line bundle L → Y [2] and
impose that the isomorphism µ respects connections. Additionally, we take
a 2-form C ∈ Ω2(Y ) – called the curving – which has to be related to the
connection on L by

curv(L) = π∗2C − π∗1C.

The connection on L together with the curving C form the connective struc-
ture. It is shown in [Mur96] that every bundle gerbe admits a connective
structure.

In the rest of this article, we will only be concerned with bundle gerbes
with connective structure, and hence drop the last suffix. We will also un-
derstand a line bundle as a (hermitian) line bundle with connection. Accord-
ingly, all isomorphisms of line bundles will be isomorphisms of line bundles
which preserve the connections. With these conventions, we are arrived at
the following definition:

Definition 1. A bundle gerbe G over M consists of a covering π : Y → M ,
a 2-form C ∈ Ω2(Y ), a line bundle L → Y [2] and an isomorphism

µ : π∗12L⊗ π∗23L → π∗13L

of line bundles over Y [3]. Two axioms have to be satisfied:

(G1) the curvature of L is related to the curving by

curv(L) = π∗2C − π∗1C.
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(G2) the groupoid multiplication is associative in the sense that the diagram

π∗12L⊗ π∗23L⊗ π∗34L

1⊗π∗234µ

��

π∗123µ⊗1
// π∗13L⊗ π∗34L

π∗134µ

��
π∗12L⊗ π∗24L π∗124µ

// π∗14L

of isomorphisms of line bundles over Y [4] is commutative.

In the following we will specify some properties of this definition and show
several constructions what one can do with it. Similar to line bundles (with
connection), each bundle gerbe G determines a closed 3-form curv(G) on M ,
called the curvature of G: the derivative of axiom (G1) gives π∗1dC = π∗2dC,
since the curvature of the line bundle L is a closed form. This means that dC
descends along π : Y → M to a 3-form on M – the curvature of the bundle
gerbe G. It is obviously a closed form, and it will turn out later that it has
an integral class.

To give an example of a bundle gerbe, we introduce trivial bundle gerbes.
Just as for every 1-form A ∈ Ω1(M) there is a trivial line bundle over M
having this 1-form as its connection, we find a trivial bundle gerbe for every 2-
form ρ ∈ Ω2(M). The construction of this bundle gerbe is quite easy: for the
covering we take the identity id : M → M , and the curving is the given 2-form
ρ. The line bundle L is the trivial line bundle with the trivial connection, and
the groupoid multiplication is the identity isomorphism between trivial line
bundles. Now, axiom (G1) is satisfied since curv(L) = 0 and π1 = π2 = idM .
The associativity axiom (G2) is surely satisfied by the identity isomorphism.
Thus we have defined a bundle gerbe, which we denote by Iρ. The curvature
of a trivial gerbe is curv(Iρ) = dρ.

Less elementary examples of bundle gerbes have been constructed in
[GR02, Mei02, GR03], namely all (bi-invariant) bundle gerbes over all simple
compact Lie groups. The availability of concrete examples in such non-trivial
cases is an important advantage of bundle gerbes. Their constructions were
possible by an explicit use of the geometric nature of bundle gerbes. For
example, to construct a bundle gerbe over SU(N), the line bundle L occurs
as the canonical line bundle on the coadjoint orbit through a simple weight
of some representation of SU(N). Another remarkable aspect is that the Lie-
theoretic construction of bundle gerbes over Lie groups apart from SU(N)
or Sp(4n) makes use of the fact that a covering π : Y → M is more general
that having an open cover of M : the dimension of Y may be greater than
the dimension of M .
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Let us again assume that the covering π : Y → M of a bundle gerbe
G comes from an open cover {Vi}i∈I of M (in fact this is the kind of gerbe
which was called before a gerbe defined on open covers [Hit01]). Remember
that we introduced the gerbe data – namely the line bundle L, the groupoid
multiplication µ and the curving C – as analogues of the data of a trivialized
line bundle. Surely the curving restricts to a 2-form Bi on each open set
Vi. To get similar local expressions for the line bundle and the groupoid
multiplication, we can trivialize once more: if the open sets Vi are chosen
such that every double intersection Vi ∩ Vj is contractible, we are able to
choose sections

σij : Vi ∩ Vj → L

of unit length. Then, the connection on L pulls back to 1-forms Aij on
each double intersection Vi ∩ Vj. Furthermore, over a three-fold intersection
Vi ∩ Vj ∩ Vk, we can multiply two sections using the groupoid multiplication,
and compare the result to a third section,

µ(σij ⊗ σjk) = gijk · σik,

via a function gijk : Vi ∩ Vj ∩ Vk → U(1). Summarizing, we have extracted
U(1)-valued functions gijk on three-fold intersections, 1-forms Aij on two-fold
intersections, and 2-forms Bi on each open set. One can deduce the following
relations among this local data:

gijk · gikl = gjkl · gijl

g−1
ijkdgijk = Ajk − Aik + Aij

dAij = Bj −Bi.

The first one is a consequence of the associativity of µ from axiom (G2), the
second is the fact that µ preserves connections, and the third is the curvature
condition (G1). These equations look like analogues of the two conditions
for local data of a line bundle – the transition functions gij : Vi ∩ Vj → U(1)
and the connection 1-forms Ai on Vi – namely

gij · gjk = gik

g−1
ij dgij = Aj − Ai.

A precise meaning of this analogy is given by Deligne cohomology. We already
have indicated that Deligne cohomology comes from a cochain complex with
cochain groups Dk(n) and a coboundary operator D. Their definition is such
that the collection of local data (g, A, B) of the bundle gerbe G defines an
element in D2(2). The three relations among this local data give the cocycle
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condition D(g, A, B) = 0, so that we see, that the bundle gerbe G defines
a class in the cohomology group H2(M,D(2)). Similarly, the collection of
local data (g, A) of a line bundle forms an element in D1(1), and the two
relations above give the cocycle condition D(g, A) = 0. So, a line bundle
defines a class in H1(M,D(1)). In the next section we will see, that with the
correct definition of isomorphisms between bundle gerbes, the correspondence
of isomorphism classes of bundle gerbes with classes in Deligne cohomology
is one-to-one.

To continue with specifying properties of a bundle gerbe, we come to the
definition of characteristic classes. The transition function gij : Vi ∩ Vj →
U(1) of a line bundle L → M with respect to an open cover {Vi}i∈I defines a
class [g] in the Čech cohomology of the sheaf U(1) with respect to the chosen
open cover. Via the exponential sequence, it hence gives rise to a class

[g] ∈ H2(M, Z),

which is independent of the cover and of the sections chosen to get the tran-
sition function. It is thus an intrinsic quantity of the line bundle L, called
the (first) Chern class and denoted by c1(L). The image of the Chern class
in de Rham cohomology is equal to the class of the curvature of L,

c1(L) = [curv(L)],

which proves that the curvature of a line bundle with connection is a 2-form
with integral class.

In the same way, the function gijk : Vi ∩ Vj ∩ Vk → U(1) defined by the
groupoid multiplication of a bundle gerbe G trivialized on an open cover,
defines a class

[g] ∈ H3(M, Z)

which is also independent of the open cover and of the sections σij which were
chosen to extract the local data. This class is called the Dixmier-Douady
class of the bundle gerbe G and denoted by dd(G). The Dixmier-Douady
class and the curvature of G obey the same relation as the Chern class and
the curvature of a line bundle [Mur96]:

dd(G) = [curv(G)].

This shows that the curvature of a bundle gerbe is a 3-form with integral
class.

As a little example, we may compute the Dixmier-Douady class of a trivial
bundle gerbe Iρ. It is easy to see that – for any open cover – the functions
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gijk can be chosen to be constantly 1, so that the local connection 1-forms
vanish, Aij = 0. Solely the curving ρ restricts to non-trivial 2-forms ρ|Vi

on
Vi. Now it is clear that the Deligne class of Iρ is represented by (1, 0, ρ), and
that the Dixmier-Douady class vanishes. Indeed, the curvature is an exact
form, whose class also vanishes.

Finally, let us remark that there are three standard constructions one can
do with bundle gerbes: tensor products, duals and pullbacks. Without giving
the details of these constructions, one observes that they behave naturally
under the correspondence with classes in Deligne cohomology: the tensor
product of bundle gerbes corresponds to the sum of classes, taking the dual
bundle gerbe corresponds to taking opposite sign, and the pullback of bundle
gerbes corresponds to the pullback of classes.

4 Morphisms of Bundle Gerbes
To find the appropriate definition of a morphism between two bundle gerbes
G1 and G2, assume for a moment that the coverings πi : Yi → M come from
open covers for i = 1, 2. To compare the gerbe data, it would be natural to
go to a common refinement of these covers. On the double intersections of
this common refinement the line bundles L1 and L2 could be compared. For
general coverings π1 and π2 the common refinement amounts to consider the
fibre product

Z := Y1 ×M Y2

thought of as a new covering ζ : Z → M sending (y1, y2) to the point π1(y1) =
π2(y2). The two-fold intersections amount to consider Z [2]. The restriction of
the line bundle Li to Z [2] is implemented by the pullback along the canonical
map yi : Z [2] → Y

[2]
i . A first idea is to require that the line bundles y∗1L1 and

y∗2L2 are isomorphic. In fact, this was the original definition of a morphism
between bundle gerbes [Mur96]. However, it turned out that this definition
was too restrictive, in other words: the isomorphism classes were too small,
and there were many non-isomorphic bundle gerbes having the same Deligne
class and hence the same surface holonomy.

A solution to this was presented in [MS00]: the line bundles shouldn’t
be isomorphic but stably isomorphic in the sense that there is a line bundle
A → Z with an isomorphism

y∗1L1 ⊗ ζ∗2A
∼= ζ∗1A⊗ y∗2L2

of line bundles over Z [2]. Here ζ1 and ζ2 are two natural projections from Z [2]

to Z. It is natural to demand that the data of a morphism of bundle gerbes
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– the line bundle A → Z and an isomorphism α as above – is compatible
with the rest of the structure of the bundle gerbes, namely the curvings and
the groupoid multiplications.

Summarizing, with the additional generalization that A may be a vector
bundle (of rank higher than 1), the correct definition of a morphism between
bundle gerbes is

Definition 2. A morphism A : G1 → G2 of bundle gerbes is a vector bundle
A → Z together with an isomorphism

α : y∗1L1 ⊗ ζ∗2A → ζ∗1A⊗ y∗2L2

of vector bundles over Z [2]. Two axioms have to be satisfied:

(M1) the curvature of A is a real 2-form and fixed by

curv(A) = y∗2C2 − y∗1C1,

(M2) the isomorphism α commutes with the groupoid multiplications µ1 and
µ2 of the bundle gerbes in the sense that the diagram

y∗1π
∗
12L1 ⊗ y∗1π

∗
23L1 ⊗ ζ∗3A

1⊗ζ∗23α

��

y∗1µ1⊗id
// y∗1π

∗
13L1 ⊗ ζ∗3A

ζ∗13α

��

ζ∗12y
∗
1L1 ⊗ ζ∗2A⊗ ζ∗23y

∗
2L2

ζ∗12α⊗1

��
ζ∗1A⊗ y∗2π

∗
12L2 ⊗ y∗2π

∗
23L2

1⊗y∗2µ2

// ζ∗1A⊗ y∗2π
∗
13L2

of isomorphisms of vector bundles over Z [3] is commutative.

There is one important point to notice from this definition of a morphism.
Given two such morphisms

A : G1 → G2 and A′ : G1 → G2

each providing a vector bundle A, A′ over Z, to compare both morphisms it
doesn’t make sense to state that they are equal or not: to compare vector
bundles one needs isomorphisms between them. This leads us forthright
to the fact that bundle gerbes form a 2-category [Ste00]: we have bundle
gerbes as objects, morphisms between the objects as defined above, and
2-morphisms between the morphisms. Before we discuss the 2-categorial
aspects of bundle gerbes, we give the precise definition of a 2-morphism.

12



Definition 3. Let A : G1 → G2 and A′ : G1 → G2 be two morphisms. A
2-morphism

β : A ⇒ A′

is an isomorphism β : A → A′ of vector bundles over Z, which is compatible
with the isomorphisms α and α′ in the sense that the diagram

y∗1L1 ⊗ ζ∗2A
α //

1⊗ζ∗2β

��

ζ∗1A⊗ y∗2L2

ζ∗1β⊗1

��
y∗1L1 ⊗ ζ∗2A

′ α′ // ζ∗1A
′ ⊗ y∗2L2

of isomorphisms of vector bundles over Z [2] is commutative.

Realizing that bundle gerbes form a 2-category is not a fault of the the-
ory, it is a feature. To give an example, notice that – as in every 2-category
– the set of all morphisms between two fixed bundle gerbes G1 and G2, to-
gether with the set of all the 2-morphisms between such morphisms, forms a
category. To be a bit more precise: for bundle gerbes they form a groupoid,
since all 2-morphisms are invertible. In particular, we have a groupoid of
endomorphisms from a bundle gerbe G to itself. This groupoid may be con-
sidered as the groupoid of gauge transformations of G. So we get a clear
understanding what the gauge symmetry of a gauge theory for strings is: it
is a groupoid rather than a group.

Another feature of this 2-categorial point of view is the following. In any
2-category, a morphism A : G1 → G2 is called isomorphism, if it is invertible
in the sense that there is another morphism B : G2 → G1 in the opposite
direction, such that there are 2-isomorphisms

B ◦ A ⇒ idG1 and A ◦ B ⇒ idG2 .

Now we ask, what this general definition means for morphisms of bundle
gerbes from Definition 2. Of course one has to say two things: what are the
identity morphisms idG1 and idG2 , and how the composition ◦ is defined. The
last point is quite involved, however it can be done [Ste00]. In this article we
only present the result.

Proposition 1. A morphism A : G1 → G2 of bundle gerbes is an isomor-
phism, if and only if the vector bundle A → Z is a line bundle, i.e. has rank
1.

The standard literature about bundle gerbes, e.g. [CJM02, GR02], takes
the last proposition as the definition of morphisms between bundle gerbes
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(so-called stable isomorphisms), and neglects that there are morphisms with
vector bundles of higher rank. As a consequence, in the standard literature
bundle gerbes form a 2-groupoid rather than a 2-category. The advantages
of our definition become apparent later on.

For the rest of this section, we restrict ourselves to isomorphisms between
bundle gerbes. We would like to get an overview over the set of possible iso-
morphisms between G1 and G2. First we get rid of the 2-morphisms by going
to equivalence classes: we call two such isomorphisms equivalent, if there
is a 2-morphism between them (which is automatically a 2-isomorphism).
In other words, we consider the skeleton of the groupoid of isomorphisms
between G1 and G2.

Proposition 2 ([CJM02, SSW05]). The set of equivalence classes of iso-
morphisms between two fixed bundle gerbes is a torsor over the group Pic0(M)
of isomorphism classes of flat line bundles over M .

Supposed we are able to compose morphisms as indicated above, being
isomorphic is an equivalence relation on the set of bundle gerbes. We present
a result which classifies these isomorphism classes of bundle gerbes, in other
words: we are looking for the skeleton of the 2-category of bundle gerbes.
Recall that a bundle gerbe defines by its local data a cocycle in the Deligne
cochain group D2(2). Similarly it can be shown, that an isomorphism A :
G1 → G2 defines a cochain (t,W ) in the cochain group D1(2). It relates the
cocycles of the two bundle gerbes by its coboundary,

(g2, A2, B2) = (g1, A1, B1) + D(t,W ).

This equation means that two isomorphic bundle gerbes define the same class
in Deligne cohomology. Even stronger is the following theorem.

Theorem 1 ([MS00]). The set of isomorphism classes of bundle gerbes is
in bijection to the Deligne cohomology group H2(M,D(2)).

This theorem makes contact to one of the other definitions of gerbes with
connective structure and gives the precise relation between line bundles and
bundle gerbes: line bundles are classified by the Deligne cohomology group
H1(M,D(1)), and bundle gerbes by H2(M,D(2)).

In the remainder of this section, we are going to sketch the relation be-
tween bundle gerbes and yet another realization of gerbes, namely sheaves
of groupoids. To this purpose we need the trivial bundle gerbes Iρ defined
in the last section as an example for bundle gerbes. In the same way as a
trivialization of a line bundle is an isomorphism to a trivial line bundle, we
say
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Definition 4. A trivialization of a bundle gerbe G is an isomorphism

T : G → Iρ.

Let us briefly exhibit the details of a trivialization, which follow from
the definitions of an isomorphism and of the trivial bundle gerbe Iρ. The
isomorphism T consists of a line bundle T over the space Z = Y ×M M
which we identify canonically with Y itself. Under this identification, the
two projections to the coverings of the bundle gerbes become the identity
id : Y → Y and the covering π : Y → M itself, so that axiom (M1) becomes

curv(T ) = π∗ρ− C.

Further, the isomorphism T consists of an isomorphism τ : L⊗ π∗2T → π∗1T
of line bundles over Z [2] = Y [2]. Because the groupoid multiplication of
the trivial bundle gerbe Iρ is the identity, axiom (M2) for τ reduces to the
equation

π∗13τ ◦ µ = π∗12τ ◦ π∗23τ

of isomorphisms of line bundles over Z [3] = Y [3].
Of course not every bundle gerbe admits a trivialization. In the same way

as for line bundles the obstruction to the existence of a trivialization is given
by the first Chern class, a bundle gerbe G admits a trivialization if and only
if its Dixmier-Douady class vanishes [CJM02]. In this case, the curvature of
the bundle gerbe G is an exact form, and

curv(G) = dρ

for any trivialization T : G → Iρ.
We define a sheaf of groupoids in the following way: for an open subset

U of M consider the set of trivializations G|U → Iρ for all 2-forms ρ (the set
may be empty). Since trivializations are nothing but isomorphisms of bundle
gerbes, together with the 2-morphisms they form naturally a groupoid G(U).
Furthermore, trivializations can clearly be restricted to smaller subsets, so
that the assignment

U 7→ G(U)

is a presheaf of groupoids. The gluing axiom can be shown by gluing together
two trivializations over U1 and U2, if there is a 2-morphisms between their
restrictions to the intersection U1 ∩U2. This way, every bundle gerbe defines
a sheaf of groupoids in Brylinski’s sense [MS00].
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5 Holonomy around closed oriented Surfaces
The holonomy of a bundle gerbe around a closed oriented surface should be
analogous to the holonomy of a line bundle around a loop γ : S1 → M , since
S1 is also closed and oriented.

So, it is worthwhile to recall how the holonomy of a line bundle L over M
around a loop γ : S1 → M can be defined. The pullback of L along γ gives a
line bundle over the circle, whose first Chern class vanishes for dimensional
reasons. Hence, it becomes isomorphic to a trivial line bundle with some
connection 1-form A ∈ Ω1(S1). Then,

holL(γ) := exp

(∫
S1

A

)
is a number in U(1) which is in fact independent of the choice of the trivial-
ization. We also write out this definition in terms of local data (g, A) of the
line bundle L with respect to an open cover {Vi}i∈I . Choose a triangulation
∆ of S1 that is subordinated to the open cover by a map i : ∆ → I, such
that γ(e) ⊂ Vi(e) for any edge e and γ(v) ∈ Vi(v) for any vertex v. Then,
by splitting the integral over A with respect to the triangulation and using
Stokes’ Theorem, one can derive the formula

holN(γ) :=
∏
i∈I

exp

(∫
e

γ∗Ai(e)

)
·
∏
v∈∂e

g
ε(e,v)
i(e)i(v)(γ(v))

where ε(e, v) ∈ {−1, 1} is positive, if v is the endpoint of e end negative
otherwise. The meaning of this formula is that one has to integrate the local
connection 1-forms along the edges, and to use the transition functions to
intermediate at the vertices between two edges.

For the definition of the holonomy of a bundle gerbe G we start with
a configuration like in Figure 1 and mimic the same procedure as for line
bundles.

Definition 5 ([CJM02]). Let G be a bundle gerbe over M . For a closed
oriented surface Σ and a smooth map φ : Σ → M , let

T : φ∗G → Iρ

be a trivialization of the pullback of the bundle gerbe G along φ. Then we
define

holG(φ) := exp

(∫
Σ

ρ

)
to be the holonomy of the bundle gerbe G around φ : Σ → M .
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M

Σ

φ

G

Figure 1: A surface is mapped into some space M with
bundle gerbe G

This sounds easy but we have to assure that the number holG(φ) is in-
dependent of the choice of the trivialization, which exists for dimensional
reasons. Different trivializations may have different 2-forms ρ, however, in
the next lemma we show that the difference ρ2 − ρ1 between to such 2-forms
is the curvature of some line bundle over M , in particular: it is a closed form
with integral class. Then, the calculation

exp

(∫
Σ

ρ2

)
= exp

(∫
Σ

ρ2 − ρ1

)
· exp

(∫
Σ

ρ1

)
= exp

(∫
Σ

ρ1

)
shows that the definition holG(φ) is independent of the choice of the trivial-
ization.

Lemma 1. Two trivializations

T1 : G → Iρ1 and T2 : G → Iρ2

of the same bundle gerbe G over M determine a line bundle over M with
curvature ρ2 − ρ1.

Proof. Using the features of the 2-category of bundle gerbes, we can give
a very relaxed proof: by taking the inverse and composition, we obtain an
isomorphism

T2 ◦ T −1
1 : Iρ1 → Iρ2

of trivial bundle gerbes. From the definitions of isomorphisms and trivial
bundle gerbes it follows immediately, that T2 ◦ T −1

1 is a line bundle with
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curvature ρ2 − ρ1. But since we have not defined inverses and composition
of isomorphisms, let us also give a more concrete proof. Recall that the two
trivializations provide line bundles T1 and T2 over Y . We show that the line
bundle T2 ⊗ T ∗

1 descends along π : Y → M . To do so we have to specify
descent data, namely an isomorphism

χ : π∗2(T2 ⊗ T ∗
1 ) → π∗1(T1 ⊗ T ∗

2 )

of line bundles over Y [2] which satisfies the cocycle condition

π∗13χ = π∗12χ ◦ π∗23χ

over Y [3]. For the definition of χ recall that the two trivializations provide
isomorphisms τi : L⊗ π∗2Ti → π∗1Ti for i = 1, 2. Then we declare χ to be the
following isomorphism:

χ : π∗2(T2 ⊗ T ∗
1 ) ∼= (L⊗ π∗2T2)⊗ (π∗2T

∗
1 ⊗ L∗)

τ1⊗τ∗−1
2

��
π∗1T2 ⊗ π∗1T

∗
1
∼= π∗1(T2 ⊗ T ∗

1 )

Using axiom (M2) for τ1 and τ2 one can now show that χ satisfies the cocycle
condition. Hence, T2 ⊗ T ∗

1 descends to a line bundle N over M with the
property

π∗N ∼= T2 ⊗ T ∗
1 .

To finish the proof we have to compute the curvature of N . Notice that by
axiom (M1) we find

curv(T2 ⊗ T ∗
1 ) = π∗ρ2 − C − (π∗ρ1 − C) = π∗(ρ2 − ρ1).

This shows that the curvature of N is ρ2 − ρ1. �

Now that we have the definition of holonomy around a closed oriented
surface we address the question if it provides the desired generalization of
Stokes’ Theorem, which is important for the application in Wess-Zumino-
Witten models.

Proposition 3. Let G be a bundle gerbe over M with curvature H. For a
three-dimensional oriented manifold B with boundary and a map Φ : B → M ,
we find

holG(Φ|∂B) = exp

(∫
B

Φ∗H

)
.
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Proof. Remember that for any trivialization T : Φ∗G|∂B → Iρ we have
Φ∗H|∂B = dρ. Then, by definition,

holG(Φ|∂B) = exp

(∫
∂B

ρ

)
= exp

(∫
B

Φ∗H

)
It is important to recognize that the last step does not just follow from
Stokes’ Theorem (because Φ∗H is not exact over B). In fact one can
triangulate B, choose local trivializations with 2-forms ρi differing by closed
2-forms with integral class by Lemma 1, and then use Stokes’ Theorem on
each 3-face. The remaining differences between the 2-forms disappear after
exponentiation. �

This way we reproduce the amplitude of the coupling term of the Wess-
Zumino-Witten model by

A(φ) = exp (Skin(φ)) · holG(φ).

Notice that we did not impose any condition on the topology of the target
space M . While in Witten’s definition, the background field (apart from the
metric) is just the three 3-form H, in the approach using bundle gerbes the
background field is the bundle gerbe G. This is no contradiction since that
all bundle gerbes over SU(2) with curvature curv(G) = H are isomorphic
[GR02]. However, for general target spaces there may be bundle gerbes
with same curvature, which are not isomorphic. This occurs for instance on
the Lie group Spin(4n)/(Z2 × Z2). Then, the bundle gerbe contains more
information as just its curvature, and it becomes essential to recognize the
bundle gerbe itself as the background field which defines the theory. Just
as little as by its curvature, the bundle gerbe can be replaced by a 2-form,
sometimes called the B-field, or Kalb-Ramond field. Such a 2-form ρ exists
in general only locally, namely when there is a trivialization G|U → Iρ. Even
then, it is not unique.

This situation is analogous in every detail to what is called the Aharonov-
Bohm effect in electrodynamics: in a (first) quantized theory of charged par-
ticles moving through a certain electric field of field strength F , not only the
field strength, but also the gauge potential A is an observable quantity which
is necessary to describe the theory – opposed to a classical theory of electro-
dynamics where everything is determined by the field strength and Maxwell’s
equations. This Aharonov-Bohm effect (which in fact was predicted 10 years
before by W. Ehrenberg and R.E. Siday) has been measured. Now one might
think that the gauge potential A, a 1-form, is the object which describes the
theory. But the gauge potential with dA = F is only defined locally, and if it
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is, it is not unique. This is exactly the behaviour of a line bundle and shows
that a line bundle provides the correct description for this situation.

To close this section, we reformulate the holonomy in terms of local data
of the bundle gerbe, analogous the formula for the holonomy of a line bundle.
Recall that a trivialization

T : φ∗G → Iρ

chosen in Definition 5 implies the following relation between the local data
of the bundle gerbe and the local data of the trivial gerbe,

(1, 0, ρ) = φ∗(g, A, B) + D(t,W ).

Now, following the strategy of the local expression for the line bundle, we
choose a triangulation ∆ of the surface Σ, consisting of faces f , edges e and
vertices v. It should be chosen subordinated to the same open cover {Vi}i∈I

of M which was used to extract the local data (g, A, B) of the bundle gerbe
G. So there is a map i : ∆ → I, assigning to each face, edge or vertex f an
index i(f) so that φ(f) ⊂ Vi(f). Now the integral of the 2-form ρ over Σ which
defines the holonomy may be split up with respect to the triangulation. By a
subsequent use of Stokes’ Theorem and the above formula for the local data
[CJM02], one ends up with the following formula

holG(φ) =
∏
f∈∆

exp

(∫
f

φ∗Bi(f)

)
·

∏
e∈∂f

exp

(∫
e

φ∗Ai(f),i(e)

)
·
∏
v∈∂e

g
ε(f,e,v)
i(f),i(e),i(v)(φ(v)). (2)

This formula shows explicitly what’s going on: the surface integral is ex-
pressed by local integrals over the local 2-forms Bi, the local Kalb-Ramond
fields with dBi = H. But on the edges and vertices, the sum has to be
corrected by the rest of the local data of the bundle gerbe. This way, the
triangulated surface gets decorated like shown in Figure 2.

Of course one can define the last expression without knowing bundle
gerbes just by starting with a class in Deligne cohomology represented by
local data (g, A, B). In fact, surface holonomy appeared first in this form
and was recognized to be useful for string theory [Alv85, Gaw88].

6 The Line Bundle over the Loop Space
As pointed out in the introduction, the holonomy of a line bundle L over a
manifold M can be seen as a U(1)-valued function

holL : LM → U(1)
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Σ

i j

k

Bi Bj

Bk

Ajk

Aki

Aij

gijk

Figure 2: The triangulation of the surface Σ is decorated
by the local data: the faces with 2-forms Bi, the edges with
1-forms Aij and the vertices with the functions gijk.

on its loop space. Recall that such a function is the first object in a series of
mathematical objects and is followed by a line bundle. So one might guess
that, when starting with a bundle gerbe instead of a line bundle, the function
on the loop space is replaced by a line bundle over the loop space. This
correspondence in question between gerbes over M and line bundles over
LM was first discovered in terms of Deligne cohomology [Gaw88]. It was
later redefined and extended to sheaves of groupoids [Bry93]. The associated
homomorphism of Deligne cohomology groups

Hk(M,D(k)) → Hk−1(LM,D(k − 1))

is called transgression, see also [GT01]. In particular, it reproduces for k = 1
the correspondence between line bundles over M and U(1)-valued functions
on LM .

Let us describe briefly how one can construct the line bundle from a
bundle gerbe G over M . The construction we present here is an adaption
of Brylinski’s construction to bundle gerbes. Another construction starting
from bundle gerbes is proposed in [GR02]. The fibre over a loop γ : S1 → M
consists of all trivializations

T : γ∗G → I0.

Such trivializations exist, because the Dixmier-Douady class of the pullback
bundle gerbe lives in H3(S1, Z) = 0. We identify two trivializations T1 and
T2, if there is a 2-morphism

T1 ⇒ T2.
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After that, the fibre over γ consists of equivalence classes of isomorphisms
between γ∗G and I0. This set is by Proposition 2 a torsor over the group
Pic0(S

1) of isomorphism classes of flat line bundles over the circle. It is
well-known that this group is canonically isomorphic to U(1). Under this
identification, the fibre over each loop γ is in a natural way a U(1)-torsor.
One can further show that the union of the fibres carries a canonical smooth
structure, which makes it into a principal U(1)-bundle over LM .

On the associated line bundle L the bundle gerbe defines a connection.
The Deligne cohomology class of this line bundle (with connection) is the
image of the class of the bundle gerbe G we started with under the transgres-
sion homomorphism of Deligne cohomology groups. There is an interesting
relation between the holonomy of the line bundle L over LM and the holon-
omy of the bundle gerbe G over M : if γ : S1 → LM is a loop in the loop
space we can naturally identify it with a map φ : S1 × S1 → M . One can
now consider both the holonomy of the line bundle L around the loop γ as
well as the holonomy of the bundle gerbe G around φ. Both coincide [Bry93]:

holL(γ) = holG(φ).

The line bundle L over the loop space plays an important role for Wess-
Zumino-Witten models on Lie groups G. Its total space can be endowed with
a group structure in a way that it becomes a central extension of the loop
group LG. It can also be completed with respect to an appropriate scalar
product, so that the space of holomorphic sections forms a Hilbert space,
which acts as the space of states for the quantized Wess-Zumino-Witten
model [Gaw99].

7 D-Branes and Surfaces with Boundary
Some string theories involve not only loops (closed strings) but also open
strings, whose worldsheets are surfaces with boundary. For those, we are not
able to apply Definition 5 of the holonomy of a bundle gerbe G: the integral
of the closed form ρ2 − ρ1 with integral class isn’t anymore an integer. More
precisely, a boundary term emerges which has to be compensated to achieve
a holonomy independent of the choice of the trivialization.

Unfortunately, there is no analogous situation for the holonomy of line
bundles. Therefore, we adopt the concept of D-branes from string theory
[Pol96]. D-Branes restrict the endpoints of open strings to submanifolds
Q of the target space, and hence impose (generalized) Dirichlet boundary
conditions to the motion of open strings. In the former definition of the Wess-
Zumino-Witten model on a Lie group G by a 3-form H, a typical choice of the
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submanifold Q is a (twisted) conjugacy class of G. Here there is an additional
condition, namely that the 3-form is fixed on the D-brane to H|Q = dω for
some 2-form ω on Q. This 2-form can be interpreted as the field strength of a
twisted U(1)-gauge field on Q. Let us for simplicity assume that the surface
Σ has only one boundary component. Accordingly, there is one D-brane
(Q,ω) chosen, and we consider a map φ : Σ → G with

φ(∂Σ) ⊂ Q.

Then, the following definition of the amplitudes is given [Gaw99]. Let D2

be a disk acting as a cap for the surface Σ, so that there exists a three-
dimensional manifold B whose boundary is ∂B = Σ∪D2. We again have to
assume that there is an extension Φ : B → M of the map φ, which now has
to send the cap D2 into the D-brane Q. Then, the amplitude is defined by

A(φ) := exp

(
Skin(φ) +

∫
B

Φ∗H −
∫

D2

Φ∗ω

)
.

There is a condition on the well-definedness of this amplitude; here it is
not sufficient that H is a closed 3-form with integral class. The equations
dH = 0 and H|Q = dω mean that the pair (H, ω) defines a class in the relative
cohomology H3(G, Q, R), and the condition is, that this class is integral in
the sense that it lies in the image of the relative cohomology with integer
coefficients. There are explicit expressions for ω in the case that Q is a
(twisted) conjugacy class, so that this integrality condition is satisfied.

We have learned before that the theory of bundle gerbes extends the
former 3-form approach to the Wess-Zumino-Witten-model. Accordingly, we
have to adjust the definition of a D-Brane. It is still build up on a submanifold
Q. In the first attempt [GR02], the 2-form ω was replaced by a trivialization

E : G|Q → Iω

of the bundle gerbe G restricted to Q. Notice that this reproduces in par-
ticular the old condition H|Q = dω for the curvature H of the bundle gerbe
G. Later it was recognized [Gaw05] that having a trivialization, i.e. an iso-
morphism, was too strong. In fact a D-brane for a certain bundle gerbe over
SO = (4n)/Z2 was found which doesn’t admit an isomorphism but a weaker
structure – a morphism from G|Q to the trivial bundle gerbe Iω.

Such a morphism G → Iω is also called a G-module or bundle gerbe
module. A slightly more general version was also considered in a purely
mathematical context to obtain a geometric realization of twisted K-theory
[BCM+02].
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Definition 6. Let G be a bundle gerbe over M . A D-brane for G is a sub-
manifold Q of M together with a G|Q-module

E : G|Q → Iω.

The 2-form ω on Q is called the curvature of the D-brane.

Recall that Lemma 1 implies that two trivializations G → Iρ1 and G → Iρ2

lead to a line bundle over M of curvature ρ2−ρ1. The same statement holds
for a gerbe module G → Iω and an trivialization G → Iρ: they define a
vector bundle E → M of curvature ω − ρ. To prove this, recall that a gerbe
module is a trivialization with a vector bundle instead of a line bundle. To
this situation, the proof of Lemma 1 extends without changes. The holonomy
of this vector bundle will be the term which compensates the changes of ρ
on the boundary.

Now consider a configuration like shown in Figure 3. We give the following
definition of holonomy.

M

Σ

φ

G

E

Q

Figure 3: A surface is mapped into a target space with
bundle gerbe G, so that its boundary is mapped into the
submanifold Q with bundle gerbe module E .

Definition 7 ([CJM02]). Let G be a bundle gerbe over M , and let (Q, E)
be a D-brane for G. For an oriented surface Σ and a map φ : Σ → M which
maps the boundary of Σ into Q, choose a trivialization

T : φ∗G → Iρ
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of the pullback of G along φ. Its restriction to ∂Σ determines in combination
with the bundle gerbe module

φ∗E : φ∗G|∂Σ → Iφ∗ω

a vector bundle E → ∂Σ of curvature φ∗ω − ρ. Then, we define

holG,E(φ) = exp

(∫
Σ

ρ

)
· tr (holE(∂Σ))

to be the holonomy of the bundle gerbe G with D-Brane (Q, E) around φ.

In fact it is easy to see that this definition does not depend on the choice
of the trivialization T : for another trivialization T ′ recall that by Lemma 1
we obtain a line bundle N → ∂Σ with curvature ρ′−ρ. The following change
in the first factor of holG,E(φ) emerges:

exp

(∫
Σ

ρ

)
= exp

(∫
Σ

ρ′
)
· exp

(∫
Σ

−curv(N)

)
= exp

(∫
Σ

ρ′
)
· (holN(∂Σ))−1 .

This change has to be compensated by the second factor. Indeed, the second
trivialization determines another vector bundle E ′ → ∂Σ of curvature φ∗ω−
ρ′. From the construction of these bundles in the proof of Lemma 1 it becomes
clear that they satisfy

E ∼= N ⊗ E ′.

This means for the second factor

tr (holE(∂Σ)) = tr (holE′⊗N(∂Σ)) = holN(∂Σ) · tr (holE′(∂Σ))

Thus we have shown that the holonomy defined in Definition 7 does not
depend on the choice of the trivialization.

With this definition of holonomy around a surface with boundary, we
have to check that it reproduces the amplitude given above in terms of the
3-form H on M and the 2-form ω on Q.

Proposition 4. Let G be a bundle gerbe over M with curvature H and let
(Q, E) be a D-brane with curvature ω. For an oriented three-dimensional
manifold B, whose boundary decomposes in two parts Σ and D2, and a map
Φ : B → M with Φ(D2) ⊂ Q we find

holG,E(Φ|Σ) = exp

(∫
B

Φ∗H −
∫

D2

Φ∗ω

)
.
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This proposition can be proven similarly to Proposition 3. It shows that
the theory of bundle gerbes and bundle gerbe modules is helpful for open
string theories and allows for a proper definition of the amplitudes of world-
sheets with boundary in the Wess-Zumino-Witten model – even in topologi-
cally non-trivial situations.

As a last point, we have a look on the holonomy in terms of local data. Let
(g, A, B) be local data of the bundle gerbe G with respect to an open cover
{Vi}i∈I of M . Similarly to the local data of an isomorphism it is possible
to extract local data of a morphism, in particular of a bundle gerbe module
[Gaw05]. It consists of functions

Gij : Vi ∩ Vj → U(n)

on double intersections, where n is the rank of the vector bundle, which is
part of the structure of a morphism. It consists further of u(n)-valued 1-forms
Pi on each open set Vi. Like an isomorphism, a morphism

E : G → Iω

relates the local data (g, A, B) of the bundle gerbe G to that of the trivial
bundle gerbe Iω by the following equations:

Gij ·Gjk ·G−1
ik · gijk = 1

Pj − AdGij
(Pi)−G−1

ij dGij + Aij = 0

dPi + Bi = ω

In these equations, we identify U(1) with the diagonal subgroup of U(n),
and correspondingly the Lie algebra of U(1) – R – with a subalgebra of u(n).
Notice that if the local data of the bundle gerbe is trivial, i.e. (g, A, B) =
(1, 0, 0), the three equations would be the usual cocycle conditions for a U(n)-
vector bundle with connection of curvature ω. With non-trivial local data,
these cocycle conditions become twisted – for this reason, gerbe modules are
also known as twisted vector bundles.

We use a triangulation of Σ which is subordinated to the open cover of
M just like we did to derive the formula (2) of the local expression of the
holonomy around a closed surface. Splitting of the integral of the 2-form ρ
over Σ, which build the first factor of holG,E(φ), leads exactly to formula (2).
It has to be amended by the local expression for the second factor, which is
the holonomy of the vector bundle E around the boundary of Σ. The ladder
is similar to the local expression for the holonomy of a line bundle around a
loop, namely

tr (holE(∂Σ)) = tr P

{ ∏
e∈∆∩∂Σ

exp

(∫
e

φ∗Pi(e)

)
·
∏
v∈∂e

G
ε(e,v)
i(e),i(v)

}
.
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The only difference is that the terms now live in the non-abelian group U(n)
and have to be ordered with respect to the induced orientation on ∂Σ, which
is indicated by the path-ordering operator P. The cyclic property of the
trace assures that it does not depend on a specific point from where one
starts multiplying terms. The complete picture where the local data is used
is shown in Figure 4.

Σ

∂Σi j

k

Bi Bj Pj

BkAki

Aij

gijk

Pk

Gjk

Figure 4: The triangulation of the surface Σ is decorated
by the local data as in Figure 2, completed by the local
1-forms Pi and the functions Gij coming from the bundle
gerbe module, which are placed on the boundary ∂Σ.

8 Unoriented closed Surfaces

From the preceding section we learn two things. To incorporate boundaries
we first had to choose structure – the D-branes – additional to the given
bundle gerbe over M . Secondly, we restricted the possible maps φ : Σ → M
to those which respect this additional structure.

To incorporate unoriented surfaces Σ we also have to do these two steps.
The additional structure has been defined in [SSW05] and called a Jandl
structure on the bundle gerbe G. It consists of an involution of M – i.e. a
diffeomorphism k : M → M with k ◦k = idM – and of a certain isomorphism
between the pullback bundle gerbe k∗G and the dual bundle gerbe G∗. In the
second step, we have to specify the space of maps we want to consider. As
we will see, they have to be compatible in a certain sense with the involution
k.

For any (unoriented) closed surface Σ there is an oriented two-fold cov-
ering pr : Σ̂ → Σ. It is unique up to orientation-preserving diffeomorphisms
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and it is connected if and only if Σ is not orientable. It has a canonical,
orientation-reversing involution σ, which permutes the sheets and preserves
the fibres. We call this two-fold covering the orientation covering of Σ.

Given a closed surface Σ, we consider maps φ̂ : Σ̂ → M starting from
the orientation covering Σ̂, which are equivariant with respect to the two
involutions on Σ̂ and M , i.e. the diagram

Σ̂
φ̂ //

σ

��

M

k

��
Σ̂

φ̂

// M

has to be commutative.

Before we come to the details of a Jandl structure, let us briefly describe
the idea behind its definition. If we pullback the bundle gerbe G along an
equivariant map φ̂, we obtain a bundle gerbe on the orientation covering Σ̂,
and could in principle compute the holonomy of this bundle gerbe around
Σ̂. If we do so, we would get the square of what we originally wanted, since
each point of Σ is twice covered. To reveal this, we are going to establish a
descent procedure – not for the bundle gerbe but rather for its holonomy. In
a first attempt we assume that there is an isomorphism

A : k∗G → G∗.

Due to the equivariance of φ̂, it induces an isomorphism between σ∗φ̂∗G and
φ̂∗G∗. This isomorphism says: changing the sheet by σ goes hand in hand
with replacing the bundle gerbe with its dual. With the precise definition of
the dual bundle gerbe G∗ it becomes easy to see from Definition 7 that both
processes – changing the orientation and taking the dual – give each a sign
in the holonomy. So the isomorphism A implies that the holonomy of φ̂∗G
takes locally the same value on both sheets, which is the initial condition for
a descent from Σ̂ to Σ.

A detailed calculation shows that it is not enough to choose any isomor-
phism like above as additional structure. It shows that the isomorphism A
itself has to be equivariant in a certain sense. To give a complete definition
of the Jandl structure it is convenient to use the 2-categorial language.

Definition 8. A Jandl structure J on a bundle gerbe G over M is an invo-
lution k of M together with an isomorphism

A : k∗G → G∗
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and a 2-morphism
ϕ : k∗A ⇒ A∗

which satisfies the equivariance condition

k∗ϕ = ϕ∗.

Notice the remarkable symmetry of the three lines. Of course we haven’t
developed the full theory of pullbacks and duals of morphisms and 2-
morphisms in this article (although they turn out to be quite canonical con-
structions). For instance, k∗A as well as A∗ are both isomorphisms from G
to k∗G∗, so it makes sense to have a 2-morphism ϕ between them. Similarly,
both k∗ϕ and ϕ∗ are 2-morphisms from A to k∗A∗, so it makes sense to
demand that they are equal.

To give an impression of the details of a Jandl structure, recall that an
isomorphism such as A consists of a line bundle A over the space Z which
is build up from the two coverings of the bundle gerbes k∗G and G∗. In this
particular situation, there is a canonical lift k̃ of the involution k into the
space Z, and it is in fact easy to work out that the 2-morphism ϕ defines a
k̃-equivariant structure on the line bundle A. Summarizing, a Jandl structure
J on G is an isomorphism

A : k∗G → G∗

whose line bundle A is equivariant with respect to the involution k̃ on Z.
As always when there is an additional structure to choose, one would like

to know how many inequivalent choices there are. To say what equivalent
Jandl structures are amounts to define a morphism between two of them.

Definition 9. A morphism β : J → J ′ between Jandl structures J =
(k,A, ϕ) and J ′ = (k,A′, ϕ′) on the same bundle gerbe G over M with the
same involution k is a 2-morphism

β : A ⇒ A′

which commutes with ϕ and ϕ′ in the sense that the diagram

k∗A
ϕ +3

k∗β

��

A∗

β∗

��
k∗A′

ϕ′
+3 A′∗

is commutative.
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Recall that 2-morphisms are certain isomorphisms of vector bundles, so
that the diagram is in fact a diagram of isomorphisms of line bundles over Z.
The definition of a morphism between Jandl structures allows us to consider
the set of equivalence classes of Jandl structures on G with involution k.
Recall that by Proposition 2 the set of equivalence classes of isomorphisms
is a torsor over the group of isomorphism classes of flat line bundles over M .
The following theorem is a refinement for Jandl structures.

Theorem 2 ([SSW05]). The set of equivalence classes of Jandl structures
on a bundle gerbe G with involution k is a torsor over the group of isomor-
phism classes of flat k-equivariant line bundles over M .

This theorem can be used to determine the number of inequivalent choices
of a Jandl structure, for instance for manifolds which have been considered
before in unoriented string theories – so called orientifolds, e.g. [BPS92,
BCW01, HSS02]. The following known results are reproduced.

• For M = SU(2) with involution k(g) := zg−1 for any element z in the
center of G, and for a bundle gerbe G over M whose curvature is an
integral multiple of the 3-form H introduced in the introduction, there
are two inequivalent Jandl structures on G with respect to k.

• For M = SO(3) with involution k(g) = g−1 and a bundle gerbe G which
is isomorphic to k∗G∗, there are four inequivalent Jandl structures on
G with respect to k.

• For the 2-torus T = S1 × S1 with involution k = idT and for a bundle
gerbe G which admits Jandl structures, their equivalence classes are in
bijection to the group Z2 × U(1)× U(1).

Let us now use a Jandl structure on a bundle gerbe G. We are going to
pursuit the idea of descent holonomy. The existence of the isomorphism A
assures that the holonomy locally coincides on both sheets – now we have
to make local selections of one of them. This is exactly what a choice of a
fundamental domain of Σ in Σ̂ does. It can be constructed locally as shown
in Figure 5 as a submanifold F of Σ̂ with (piecewise smooth) boundary. A
key observation, which can be heuristically seen from Figure 5, is that the
involution σ restricts to an orientation-preserving involution on ∂F ⊂ Σ̂.
Accordingly, the quotient ∂F is an oriented closed submanifold of Σ.

Remember the following two situations: two trivializations of the same
bundle gerbe define a line bundle over M with a certain curvature (Lemma
1). A trivialization together with a D-brane gives a vector bundle with a
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pr

Σ Σ̂

σ

σ

σ

Figure 5: On the left hand side we show a dual trian-
gulation, i.e. every vertex has three edges. According to a
choice of local orientations for every face of the triangulation
– which is always possible – select one of the two preimages
of this face under the covering pr : Σ̂ → Σ. This defines a
fundamental domain as the grey-shaded surface on the right
hand side.

certain curvature. A similar situation appears for a trivialization together
with a Jandl structure.

Lemma 2 ([SSW05]). A trivialization T : G → Iρ and a Jandl structure
J on G with involution k determine a k-equivariant line bundle R → M with
curvature k∗ρ + ρ.

Now we are ready to put the pieces together:

Definition 10 ([SSW05]). Let G be a bundle gerbe over M with Jandl
structure J with involution k. Let Σ be a closed surface with orientation
covering Σ̂ and let φ̂ : Σ̂ → M be an equivariant map. The pullback along φ̂
gives a bundle gerbe φ∗G over Σ̂ with Jandl structure φ̂∗J with involution σ.
A choice of a trivialization

T : φ̂∗G → Iρ

determines in combination with the Jandl structure a σ-equivariant line bun-
dle R → Σ̂. In turn, this equivariant line bundle determines a quotient line
bundle R̄ → Σ. Let F be a fundamental domain. Then we define

holG,E,J (φ̂) := exp

(∫
F

ρ

)
· holR̄(∂F )
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to be the holonomy of the bundle gerbe G with Jandl structure J around φ̂.

In [SSW05] we show that this definition depends neither on the choice of
the trivialization nor on the choice of the fundamental domain.

To close, let us remark that also a Jandl structure can be understood
in terms of local data. Recall that an isomorphism A relates local data of
bundle gerbes, here

−(g, A, B) = k∗(g, A, B) + D(t,W ).

It is also possible to extract a function ji : Vi → U(1) from the 2-morphism
ϕ, which relates the local data (t,W ) of the isomorphism A to their pullback,

(t,W ) = k∗(t,W ) + D(j).

Finally, the condition on the 2-morphism ϕ leads to

j−1 = k∗j.

In [SSW05] an expression for the holonomy holG,E,J (φ̂) is derived in terms of
the local data of the bundle gerbe and of the Jandl structure, analogous to
(2). We don’t give the full expression here, but indicate how the local data
should be placed on a triangulated surface in Figure 6.

Σ Σ̂

Bl

l

i

j

k

Bi

Bk

Aik

Wi

tik

Wl

jkWk

Bj

Figure 6: The oriented triangulation of the closed surface
Σ determines a fundamental domain, which is decorated by
the local data of the bundle gerbe in its interior and by
the local data of the Jandl structure along the orientation
reversing edges.
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