String structures and supersymmetric sigma models

Konrad Waldorf Universität Greifswald

"Higher structures in string theory and quantum field theory" Erwin-Schrödinger-Institut für Mathematische Physik

December 2015

1.) Supersymmetric sigma models and Pfaffian line bundles

2.) Spin structures on loop spaces

3.) String structures and string connections

A 2-dimensional **supersymmetric sigma model** consists of the following structure:

- ▶ the target space, a Riemannian manifold *M*.
- the world sheet, a Riemann surface Σ with a spin structure \mathbb{S} .

The fields are parameterized by world sheet embeddings

$$\phi \in M^{\Sigma} := C^{\infty}(\Sigma, M);$$

for each ϕ we have an associated Hilbert space of spinors,

$$\psi \in V_{\phi} := L^2(\Sigma, \mathbb{S} \otimes \phi^* TM).$$

The action functional is

$$\mathcal{S}(\phi,\psi) := \int_{\Sigma} \left\{ \|\mathrm{d}\phi\|^2 + \langle \psi, D\!\!\!/_{\phi}\psi
angle
ight\} \,\mathrm{d} extsf{vol}_{\Sigma} \,.$$

A particular problem is to give rigorous sense to the **fermionic path integral**

$$\mathcal{A}^{\mathsf{fer}}(\phi) = \int_{\psi \in V_{\phi}} \exp\left(\int_{\Sigma} \left\langle \psi, \not\!\!{D}_{\phi} \psi \right\rangle \mathrm{d}\mathsf{vol}_{\Sigma}\right) \mathrm{D}\psi$$

which suffers from the absence of an appropriate measure.

Well-known solution: associate to each ϕ a complex line P_{ϕ} and identify $\mathcal{A}^{fer}(\phi)$ as a well-defined element in P_{ϕ} .

Varying ϕ over $M^{\Sigma} := C^{\infty}(\Sigma, M)$, the complex lines P_{ϕ} form a smooth line bundle $Pfaff(\mathcal{D})$ over M^{Σ} , and the elements $\mathcal{A}^{fer}(\phi)$ form a smooth section $\mathcal{A}^{fer} \in \Gamma(M^{\Sigma}, Pfaff(\mathcal{D}))$.

The space $M^{\Sigma} = C^{\infty}(\Sigma, M)$ of bosonic fields parameterizes a family of \mathbb{Z}_2 -graded Hilbert spaces

$$\mathcal{H}_{\phi} := L^2(\Sigma, \mathbb{S} \otimes_{\mathbb{R}} \phi^* TM).$$

On every Hilbert space \mathcal{H}_{ϕ} we have the **Dirac operator** D on \mathbb{S} twisted by the Levi-Civita connection $\phi^* \nabla$ on M, and additionally twisted by a natural quaternionic structure J on \mathbb{S} ,

$$\not\!\!\!D_{\phi} := J \circ (D \otimes \phi^* \nabla).$$

Thus, \mathcal{D}_{ϕ} is an even, anti-self-adjoint operator on \mathcal{H}_{ϕ} .

We regard the even, anti-self-adjoint operator $D\!\!\!/_{\phi}$ as a skew-symmetric bilinear form

$$(-, \not\!\!D_{\phi} -) := \int_{\Sigma} \left\langle -, \not\!\!D_{\phi} - \right\rangle \mathrm{d}$$
vol $_{\Sigma}$.

We introduce a **spectral cut** $\mu > 0$ for \not{D}_{ϕ} , and obtain an 2k-dimensional vector space $\mathcal{H}_{\phi}^{\mu,+}$, equipped with the skew form

$$(-, \not\!\!D_{\phi} -) \in \Lambda^2(\mathcal{H}^{\mu,+}_{\phi})^*.$$

It defines an element

$$\textit{pfaff}^{\mu}_{\phi} \ := \ rac{1}{k!} (-,
ot\!\!/_{\phi} -)^{\wedge k} \ \in \ \Lambda^{2k} (\mathcal{H}^{\mu, +}_{\phi})^{*} \ =: \ \det \mathcal{H}^{\mu, +}_{\phi}$$

The **Berezin integral** is defined for any finite-dimensional vector space V:

$$\int_{V} : \Lambda^{p} V^{*} \longrightarrow \det V^{*} : \alpha \longmapsto \begin{cases} \alpha & \text{if } p = \dim V \\ 0 & \text{else} \end{cases}$$

If dim V = 2k and $\alpha \in \Lambda^2 V^*$, then

$$\int_V \exp(\alpha) = \frac{1}{k!} \alpha^{\wedge k}.$$

We apply this to $V = \mathcal{H}^{\mu,+}_{\phi}$ and $\alpha = (-, \not D_{\phi} -)$. Then we have rigorously interpreted

$$\int_{\mathcal{H}_{\phi}^{\mu,+}} \exp\left(\int_{\Sigma} \left\langle -, \not\!\!{D}_{\phi} - \right\rangle \mathrm{d}\textit{vol}_{\Sigma}\right) = \textit{pfaff}_{\phi}^{\mu} \in \det \mathcal{H}_{\phi}^{\mu,+}.$$

It remains to get rid of the spectral cut μ .

We work over the open set

$$U_{\mu} := \{ \phi \in B \mid \mu \notin \operatorname{spec}(\mathcal{D}_{\phi}) \}.$$

 $\mathcal{H}^{\mu,+}_{\phi}$ are fibres of a smooth, finite-dimensional vector bundle $\mathcal{H}^{\mu,+}$. $pfaff^{\mu}_{\phi}$ are the values of a smooth section $pfaff^{\mu}$ of det $(\mathcal{H}^{\mu,+})$.

The open sets U_{μ} cover M^{Σ} . One can glue the determinant line bundles det $(\mathcal{H}^{\mu,+})$ in two different ways:

1.) one obtains the usual determinant line bundle det D

2.) one obtains a line bundle $Pfaff(\emptyset)$, the **Pfaffian line bundle**.

The sections $pfaff^{\mu}$ glue to a global section pfaff of $Pfaff(\phi)$.

Summarizing, the fermionic path integral is rigorously defined by

$$\mathcal{A}^{\mathsf{fer}}(\phi) := \mathsf{pfaff}(\phi)_{i}$$

forming a smooth section $\mathcal{A}^{fer} \in \Gamma(M^{\Sigma}, Pfaff(\not D))$.

Thus, the integrand for the full path integral,

$$\mathcal{A}(\phi) = \exp\left(\int_{\Sigma} \|\mathrm{d}\phi\|^2 \cdot \mathrm{d}\mathit{vol}_{\Sigma}\right) \cdot \mathcal{A}^{\mathit{fer}}(\phi)$$

is a smooth section of $Pfaff(\emptyset)$.

It is *not* a function $\mathcal{A} : \mathcal{M}^{\Sigma} \longrightarrow \mathbb{C}$. This situation is called an **anomaly** ("global", "fermionic",...). Our mission is to cancel this anomaly, for instance by providing a trivialization of *Pfaff*(\mathcal{D}).

1.) Supersymmetric sigma models and Pfaffian line bundles

2.) Spin structures on loop spaces

3.) String structures and string connections

We want to trivialize the line bundle $Pfaff(\mathcal{D})$ over $M^{\Sigma} = C^{\infty}(\Sigma, M).$

Theorem (Freed '03)

If M is equipped with a spin structure, then

$$c_1(Pfaff(
otin)) = \int_{\Sigma} ev^*(rac{1}{2}p_1(M))$$

where $ev : M^{\Sigma} \times \Sigma \longrightarrow M$ is the evaluation map, and $\frac{1}{2}p_1(M) \in H^4(M, \mathbb{Z})$ is the first fractional Pontryagin class of M.

In particular, $Pfaff(\emptyset)$ is trivializable if $\frac{1}{2}p_1(M) = 0$. Spin manifolds that satisfy this condition are called **string manifolds**.

But we need more: we need a trivialization of $Pfaff(\phi)$.

For the 2-torus $\Sigma = S^1 \times S^1$, integration factors through the free loop space $LM := C^{\infty}(S^1, M)$:

$$H^{4}(M,\mathbb{Z}) \xrightarrow{\int_{S^{1}} ev^{*}} H^{3}(LM,\mathbb{Z}) \xrightarrow{\int_{S^{1}} ev^{*}} H^{2}(M^{\Sigma},\mathbb{Z})$$

$$\frac{1}{2}p_{1}(M) \longmapsto \lambda \longmapsto c_{1}(Pfaff(\not D))$$

The intermediate step $\lambda \in H^3(LM, \mathbb{Z})$ is an analog of the **3rd** integral Stiefel-Whitney class for the loop space.

We see that $Pfaff(\emptyset)$ is trivializable if $\lambda = 0$.

Let *FM* be the frame bundle of *M*, with the structure group reduced to Spin(n).

Theorem (Killingback '87; McLaughlin '92)

 λ vanishes if and only if the structure group of LFM can be reduced to the universal loop group extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{L\mathrm{Spin}(n)} \longrightarrow L\mathrm{Spin}(n) \longrightarrow 1.$$

Such a reduction is called **spin structure** on *LM*. Killingback's idea: a spin structure on *LM* should give a trivialization of *Pfaff*(\mathcal{D}). However, this has never been confirmed. The relation between the class $\lambda \in H^3(LM, \mathbb{Z})$ and spin structures on LM can be understood via the **spin lifting gerbe**. The spin lifting gerbe is a bundle gerbe over LM with Dixmier-Douady class λ :

Theorem (Murray '95)

Trivializations of S_{LM} are in 1:1 correspondence with reductions, *i.e.* with spin structures on LM.

1.) Supersymmetric sigma models and Pfaffian line bundles

2.) Spin structures on loop spaces

3.) String structures and string connections

We return to the original insight that $Pfaff(\mathcal{D})$ is trivializable if and only if M is a string manifold, i.e. $\frac{1}{2}p_1(M) \in H^4(M, \mathbb{Z})$ vanishes.

Nowadays we have a nice higher-geometric structure which is classified by $\mathrm{H}^4(M,\mathbb{Z})$: bundle 2-gerbes.

For the class $\frac{1}{2}p_1(M)$ there is a particularly nice bundle 2-gerbe: the **Chern-Simons bundle 2-gerbe**.

$$CS_{M} = \begin{cases} g^{*}\mathcal{G}_{bas} \longrightarrow \mathcal{G}_{bas} \\ \downarrow & \downarrow \\ FM \stackrel{\checkmark}{\longleftarrow} FM^{[2]} \stackrel{}{\longrightarrow} \operatorname{Spin}(n) \\ \downarrow \\ M \end{cases}$$

(Carey-Johnson-Murray-Stevenson-Wang '05)

A trivialization of the Chern-Simons bundle 2-gerbe CS_M consists of a bundle gerbe S over FM whose restriction to each fibre is G_{bas} . Theorem (Stevenson '04)

A trivialization of CS_M exists if and only if $\frac{1}{2}p_1(M) = 0$.

We call trivializations of the Chern-Simons 2-gerbe **string structures**.

Thus, we have the following implications:

M admits string structures $\iff M$ is string

 \implies *Pfaff*(\not) is trivializable

The integration of cohomology classes

$$\begin{split} \mathrm{H}^{4}(M,\mathbb{Z}) &\longrightarrow \mathrm{H}^{3}(LM,\mathbb{Z}) \quad , \quad \frac{1}{2}p_{1}(M) \longmapsto \lambda \\ \mathrm{H}^{4}(M,\mathbb{Z}) &\longrightarrow \mathrm{H}^{2}(M^{\Sigma},\mathbb{Z}) \quad , \quad \frac{1}{2}p_{1}(M) \longmapsto c_{1}(P) \end{split}$$

lift to functors defined on the (homotopy) category of bundle 2-gerbes with connections:

These functors are called transgression functors.

In order to apply transgression, we need to equip the Chern-Simons 2-gerbe \mathcal{CS}_M with a connection. This can be done in a canonical way using the connection on the basic gerbe \mathcal{G}_{bas} of curvature $H(X, Y, Z) = \langle X, [Y, Z] \rangle$, and the Chern-Simons 3-form

$$\langle A \wedge \mathrm{d}A \rangle + rac{2}{3} \langle A \wedge [A \wedge A] \rangle \in \Omega^3(FM).$$

where A is the Levi-Civita connection 1-form on FM.

In order to transgress trivializations, we also need to equip them with connections; these are called **string connections**.

Theorem (KW '09)

Every string structure admits a string connection, and the set of string connections is affine.

A geometric string structure is a pair of a string structure and a string connection.

Theorem (KW '09)

The transgression of CS_M to the loop space is the spin lifting gerbe S_{LM} . In particular, every geometric string structure on M gives a spin structure on LM.

Theorem (Bunke '10)

The transgression of CS_M to the mapping space M^{Σ} is $Pfaff(\emptyset)$. In particular, every geometric string structure gives a trivialization of $Pfaff(\emptyset)$.

Conclusion: geometric string structures cancel the anomaly of the supersymmetric sigma model.

Remark 1 – Classification of string structures

- ► The set of isomorphism classes of string structures on a string manifold *M* is parameterized by H³(*M*, ℤ).
- ► The set of isomorphism classes of geometric string structures on a string manifold *M* is parameterized by the differential cohomology group Ĥ³(*M*, ℤ).

Recall that $\hat{\mathrm{H}}^{3}(M,\mathbb{Z})$ is the group of B-fields on M, i.e. B-fields act on the geometric string structures. In particular, 2-forms $B \in \Omega^{2}(M)$ act on the string connections.

Under this action, the trivialization of $Pfaff(\emptyset)$ changes by

$$\exp 2\pi \mathrm{i} \int_{\Sigma} B.$$

In particular, it depends on the choice of the string connection.

Remark 2 – The covariant derivative of a string connection

Every geometric string structure on M determines a 3-form $K \in \Omega^3(M)$ with $dK = \frac{1}{2} \langle F_A \wedge F_A \rangle$.

The B-field action of $B \in \Omega^2(M)$ takes K to K + dB.

The Pfaffian $Pfaff(\mathcal{D})$ comes equipped with the Bismut-Freed connection. The section of $Pfaff(\mathcal{D})$ has covariant derivative

$$\int_{\Sigma} ev^* K \in \Omega^1(M^{\Sigma}).$$

Höhn-Stolz conjecture: if $\operatorname{Ric}_g > 0$ and K = 0, then the Witten genus of M vanishes in $tmf^{-n}(pt)$.

Remark 3 – The string 2-group

String structures can also be understood in terms of a (higher) reduction problem in non-abelian gerbes.

There is a central extension

$$BU(1) \longrightarrow String(n) \longrightarrow Spin(n)$$

of Lie 2-groups, and one can try to "reduce" the frame bundle FM to a non-abelian gerbe with structure 2-group String(n).

Theorem (KW-Nikolaus '12)

The Chern-Simons 2-gerbe is the (higher) lifting gerbe of this reduction problem, i.e. there is a 1:1 correspondence between string structures and reductions of FM to String(n).

Remark 4 - Spin structures on loop spaces revisited

Recall: transgression takes string structures on M to spin structures on LM.

The problem is that transgression is neither injective nor surjective. We have to describe the image of transgression.

Theorem (KW '14)

There is a 1:1 correspondence between string structures on M and spin structures on LM equipped with fusion product and thin homotopy equivariance.

Summary:

- A string structure is higher geometrical structure whose existence is obstructed by ½p₁(M) ∈ H⁴(M, ℤ).
- Together with a string connection, it defines a trivialization of the Pfaffian line bundle of a family of Dirac operators parameterized by a space of maps M^Σ.
- The integrand of the path integral of the supersymmetric sigma model with target *M* is a section in that Pfaffian bundle.

Given a geometric string structure it becomes a smooth map,

i.e. the model becomes anomaly-free.

References

- U. Bunke, "String Structures and Trivialisations of a Pfaffian Line Bundle". Commun. Math. Phys., 307(3):675–712, 2011. [arxiv:0909.0846]
- A. L. Carey, S. Johnson, M. K. Murray, D. Stevenson, and B.-L. Wang, "Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories". *Commun. Math. Phys.*, 259(3):577–613, 2005. [arxiv:math/0410013]
- T. Killingback, "World sheet anomalies and loop geometry". Nuclear Phys. B, 288:578, 1987.
- D. A. McLaughlin, "Orientation and string structures on loop space". Pacific J. Math., 155(1):143–156, 1992.
- M. K. Murray, "Bundle gerbes".
 - J. Lond. Math. Soc., 54:403-416, 1996.
 - [arxiv:dg-ga/9407015]

T. Nikolaus and K. Waldorf, "Lifting problems and transgression for non-abelian gerbes".

Adv. Math., 242:50-79, 2013.

[arxiv:1112.4702]

D. Stevenson, "Bundle 2-gerbes".

Proc. Lond. Math. Soc., 88:405-435, 2004.

[arxiv:math/0106018]

K. Waldorf, "String connections and Chern-Simons theory". Trans. Amer. Math. Soc., 365(8):4393–4432, 2013. [arxiv:0906.0117]

K. Waldorf, "String geometry vs. spin geometry on loop spaces". J. Geom. Phys., 97:190–226, 2015.

[arxiv:1403.5656]