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Let G be a compact connected Lie group, e.g. G = SU(2).

The loop group is the set of smooth loops in G ,

LG := C∞(S1, G ).

The group structure is point-wise multiplication.

It is a Fréchet Lie group, with Lie algebra Lg = C∞(S1, g).

Unfortunately, LG has no interesting unitary representations.

However, it has projective-unitary representations, i.e. it has central
extensions

1 // U(1) // L // LG // 1

and representations ρ : L // U(H).



Some central extensions

1 // U(1) // L // LG // 1

have an interesting subclass of representations: positive-energy
representations.

This class of representations is accessible by “classical” methods:
weights, Weyl groups, Borel-Bott-Weil theory,...

Book “Loop groups” by A. Pressley and G. Segal (1986).

Under Connes fusion, positive energy representations form a modular
tensor category. This tensor category has nice algebraical descriptions
(via VOAs, quantum groups at roots of unity, conformal nets...).



Goal of this talk:

Describe an approach to the representation theory of loop groups via
higher-categorical, finite-dimensional geometry.



Let M be a smooth manifold.

Some examples of higher-categorical geometry over M:
gerbes, 2-vector bundles, B-fields, string geometry,...

General slogan (J.-L. Brylinski, 1993):

{
Higher-categorical
geometry over M

}
Transgression //






Ordinary geometry
over the loop space
LM = C∞(S1, M)






∈ ∈

Gerbe
� // U(1)-principal bundle

General phenomenon:

I transgression is not surjective.

I transgression is not injective.



Some details — the definition of a gerbe.

Recall: a principal G -bundle P over M can be described by

I open sets Uα ⊆ M that cover M,

I transition functions gαβ : Uα ∩ Uβ
// G , and

I a cocycle condition: gαβ ∙ gβγ = gαγ over Uα ∩ Uβ ∩ Uγ .

A gerbe over M can be described by

I open sets Uα ⊆ M that cover M,

I U(1)-principal bundles Pαβ over Uα ∩ Uβ ,

I bundle isomorphisms

μαβγ : Pαβ ⊗ Pβγ
// Pαγ

over Uα ∩ Uβ ∩ Uγ , and

I a cocycle condition for μαβγ over Uα ∩ Uβ ∩ Uγ ∩ Uδ.

Higher-categorical structure: gerbes form a bicategory.



Some more details — transgression of a gerbe.

We define a U(1)-principal bundle L over LM:

I For a loop γ : S1 // M, choose
0 = t0 ≤ ... ≤ tn = 1 and indices
α1, ..., αn such that

γ([ti−1, ti ]) ⊆ Uαi

Uαi−1

Uαi

γ(ti )

Pαi−1αi

I Define the fibre of L over γ by

Lγ := Pα1α2|γ(t1)
⊗ ... ⊗ Pαn−1αn|γ(tn−1)

⊗ Pαnα1|γ(tn)

Isomorphisms μαβγ  independence of n and of indices αi

Connection on Pαβ  independence of ti ∈ γ−1(Uαi ∩ Uαi+1)



How is this related to Lie groups?

We put M := G and consider a gerbe over G that is compatible with the
group structure (“multiplicative”).

Multiplicativity is additional structure: if G is a gerbe over G , it consists
of a gerbe isomorphism

pr∗1G ⊗ pr∗2G // m∗G

over G × G , and of a certain gerbe 2-isomorphism over G × G × G
satisfying a coherence condition over G × G × G × G .



An example — the basic gerbe over SU(n).

The construction is due to Gawȩdzki-Reis (2002), and has been
generalized by Meinrenken (2002) to arbitrary compact, connected,
simple, simply-connected Lie groups.

We choose a maximal torus with Lie algebra t, a root system and a
closed Weyl alcove A ⊆ t∗.

Recall two properties of a Weyl alcove:

I it is a simplex with vertices 0 = μ1, ..., μn.

I it parameterizes conjugacy classes of G .

This means that there is a (continuous) map

q : G // A

such that g and e iq(g) are conjugate for every g ∈ G .



Now we write down all the structure of the basic gerbe over SU(n):

1. For α = 1, ..., n, define open sets

Uα := q−1(A \ fα),

where fα is the face of A opposite to the vertex μα.

2. There is a deformation retract

r : Uα ∩ Uβ
// Oαβ

onto the coadjoint orbit Oαβ through μβ − μα ∈ t∗.

The elements μβ − μα are weights, so that Oαβ is quantizable in the
sense of symplectic geometry.

Define Pαβ as the pullback of Kirillov-Kostant-Souriau prequantum
bundle along the retract.

3. The isomorphism μαβγ comes from the equality

μγ − μα = (μβ − μα) + (μγ − μβ).



In the multiplicative context, transgression becomes a map

{
Multiplicative gerbes

over G

}
Transgression //

{
Central extensions

of LG

}

�� ��
H4(BG ,Z) ∫

S1 ev∗
// H3(BLG ,Z) ∼= H2(BLG , U(1))

In the case of G = SU(n), this diagram becomes the following:

Basic gerbe � //
_

��

Universal central
extension of LSU(n)

_

��
1

� // 1

∈ ∈

Z
id

// Z



A central extension

1 // U(1) // L // LG // 1

is called transgressive, if it is in the image of transgression.

Question: given a Lie group G , which central extensions of LG are
transgressive?

In other words, which central extensions of LG (in particular, which
projective representations) are accessible via higher-categorical geometry?



Some result about transgressivity.

Again G = SU(n). We have seen that the universal central extension is
transgressive: it is the image of the basic gerbe under transgression.

Hence, all central extensions of LSU(n) are transgressive.

This generalizes to all compact, simple, connected Lie groups G .

J.-L. Brylinski & D. McLaughlin (1993-1996) characterized transgressive
central extensions, for complex Lie groups, in terms of a “Segal-Witten
reciprocity law”.

They also proposed a solution for compact Lie groups, but that turned
out to be false (noticed around 2000 by Brylinski himself).



Theorem [KW, 2015]

Let G be a connected Lie group. Then, a central extension L of LG is
transgressive if and only if it can be equipped with:

(1) Fusion product — for 3 arcs in G connecting two
points, a group homomorphism

Lleft leg’s loop ⊗ Lright leg’s loop
// Lhip’s loop

(2) Thin homotopy equivariant structure — for a hose in G
“without area”, a group homomorphism

Lingoing loop
// Loutgoing loop

(+ several conditions)



As a by-product of this characterization, one can deduce two
consequences of transgressivity. The first is the following:

Every transgressive central extension is equivariant under loop
rotation. (This is necessary for imposing positive energy.)

This is proved as follows: let τ : S1 // G be a loop and φ be an angle.
Define γ : [0, 1] // LG by the formula

γ(t)(z) := τ(ze itφ),

so that γ is a path from τ to the rotated loop rotφ(τ). As a map

[0, 1] × S1 // G

it has only rank one, i.e. it has “no area”. The thin homotopy
equivariant structure provides the required lift

Lτ
// Lrotφ(τ).



The second consequence is the following:

Every transgressive central extension is disjoint commutative in the
following sense.

Suppose loops τ1, τ2 : S1 // G have disjoint support, and `1 ∈ Lτ1 ,
`2 ∈ Lτ2 . Then,

`1 ∙ `2 = `2 ∙ `1.

In particular, for ρ : L // U(H) a positive-energy representation, the
operators ρ(`1) and ρ(`2) commute in U(H).

This is of importance in algebraic quantum field theory formulations of
CFT, and was proved for G = SU(n) by Gabbiani & Fröhlich (1993) via a
concrete calculation in the Mickelsson model of the central extension.



Another example: G = U(1).

Some central extensions of the loop group LU(1) are transgressive, others
are not.

Over U(1) there is only a single gerbe: the trivial one.

Gerbe isomorphisms between trivial gerbes are just principal
U(1)-bundles. Thus, the trivial gerbe becomes multiplicative by
specifying a principal U(1)-bundle

P

��
U(1) × U(1)

(plus some isomorphism over U(1) × U(1) × U(1)). There is an
interesting choice: the Poincaré bundle.

Under transgression, this yields a non-trivial, transgressive central
extension of LU(1).



On the other hand, one can explicitly write down a smooth 2-cocycle

η : LU(1) × LU(1) // U(1)

that gives rise to a central extension which is not disjoint-commutative.

Hence it is not transgressive.

This is an example of a central extension that is not accessible via
higher-categorical geometry over U(1).



Summary:

I For every compact connected Lie group G , we have a map

{
Multiplicative gerbes

over G

}
Transgression //

{
Central extensions

of LG

}

I Transgressive central extensions are characterized by a fusion
product and a thin homotopy equivariant structure.

I Important central extensions are transgressive, e.g. universal ones.

I This approach explains rotation-equivariance and disjoint
commutativity, as derived concepts.



Main message of this talk:

Higher-categorical geometry is useful for understanding loop group
extensions and, perhaps in the future, their representation theory.

Why can this be expected?

Freed-Hopkins-Teleman (2003-2010):

K k+h∨

G (G ) ∼= Repk(LG )

Following a philosophy of Witten (1998), K k+h∨

G (G ) classifies symmetric
D-branes in the level k WZW model over G .

These, in turn, can be described by higher-geometrical structure,
Kapustin (2001), Gawȩdzki-Reis (2002), Carey et al. (2002), Gawȩdzki
(2005).
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F. Gabbiani and J. Fröhlich, “Operator algebras and conformal field theory”.

Commun. Math. Phys., 155(3):569–640, 1993.
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