Geometric string structures and supersymmetric sigma models

Konrad Waldorf

These are notes of a talk given at the workshop "Higher Gauge Theory, TQFT's and Categorification" at Cardiff University in May 2011

1 Motivation

Setup for a 2-dimensional, bosonic sigma model:

- target space: Riemannian manifold M
- worldsheet: Riemann surface Σ
- fields: smooth maps $\phi: \Sigma \longrightarrow M$
- action functional:

$$
S^{b o s}(\phi):=\int_{\Sigma}\langle\mathrm{d} \phi \wedge \star \mathrm{~d} \phi\rangle
$$

Setup for the supersymmetric sigma model:

- require additionally a spin structure on Σ.
- for each field $\phi: \Sigma \longrightarrow M$, there is a $\mathbb{Z} / 2 \mathbb{Z}$-graded Hilbert space \mathcal{H}_{ϕ} of fermionic fields, and a Dirac operator

$$
\not D_{\phi}: \mathcal{H}_{\phi}^{+} \longrightarrow \mathcal{H}_{\phi}^{+} .
$$

- additional term in the action functional

$$
S_{\phi}^{f e r}(\psi):=\int_{\Sigma}\left\langle\psi, \not D_{\phi} \psi\right\rangle \operatorname{dvol}_{\Sigma}
$$

Problem: give sense to the "quantum integrand"

$$
\mathcal{A}^{\text {susy }}(\phi)=\exp \left(S^{\text {bos }}(\phi)\right) \cdot \int_{\mathcal{H}_{\phi}^{+}} \exp \left(S_{\phi}^{f e r}(\psi)\right) \mathrm{d} \psi
$$

as a smooth function

$$
\mathcal{A}^{\text {susy }}: C^{\infty}(\Sigma, M) \longrightarrow \mathbb{C} .
$$

In this talk, I want to describe a solution to this problem based on work of Freed [Fre87], Freed-Moore [FM06], Bunke [Bun] and myself [Wal]. Overview:

- Using theory of differential operators one defines a line bundle $\mathcal{P} f a f f\left(D_{M}\right)$ over $C^{\infty}(\Sigma, M)$ together with a smooth section pfaff : $C^{\infty}(\Sigma, M) \longrightarrow \mathcal{P} f a f f\left(D_{M}\right)$. Upon interpreting the fermionic path integral as a Berezinian integral, one gets

$$
\int_{\mathcal{H}_{\phi}^{+}} \exp \left(S_{\phi}^{\text {fer }}(\psi)\right) \mathrm{d} \psi=\operatorname{pfaff}(\phi)
$$

- A geometric string structure \mathbb{T} on M defines a trivialization $t_{\mathbb{T}}: \mathcal{P} f a f f\left(\Phi_{M}\right) \longrightarrow \mathbb{C}$. The composition of the trivialization $t_{\mathbb{T}}$ with the section pfaff defines the desired smooth function,

$$
\mathcal{A}_{\mathbb{T}}^{\text {susy }}:=\exp \left(S^{b o s}\right) \cdot\left(t_{\mathbb{T}} \circ \text { pfaff }\right) .
$$

2 Determinant and Pfaffian Bundles

Linear algebra:

- Let V_{0} and V_{1} be finite-dimensional vector spaces, and $f: V_{0} \longrightarrow V_{1}^{*}$ be a linear map. Taking highest exterior powers yields the $\operatorname{determinant} \operatorname{det}(f): \operatorname{det} V_{0} \longrightarrow \operatorname{det} V_{1}^{*}$, which can be regarded as an element

$$
\operatorname{det}(f) \in \operatorname{det} V_{0}^{*} \otimes \operatorname{det} V_{1}^{*} .
$$

- Suppose $V_{0}=V_{1}=: V$ and $\operatorname{dim} V=2 n$. The map $f: V \longrightarrow V^{*}$ is skew-symmetric if it corresponds to an element $f \in \Lambda^{2} V^{*}$. In this case, its Pfaffian is defined by

$$
\operatorname{pfaff}(f):=\frac{1}{n!} f^{n} \in \Lambda^{2 n} V^{*}=\operatorname{det} V^{*}
$$

We have

$$
\operatorname{pfaff}(f) \otimes \operatorname{pfaff}(f)=\operatorname{det}(f)
$$

as elements of $\operatorname{det} V^{*} \otimes \operatorname{det} V^{*}$.
Consider an odd self-adjoint elliptic operator $D: \mathcal{H} \longrightarrow \mathcal{H}$ acting on a $\mathbb{Z} / 2 \mathbb{Z}$-graded Hilbert space \mathcal{H}, i.e. its spectrum is real, discrete and the eigenspaces are graded finite-dimensional. The spectrum of the operators $D_{ \pm}^{2}$ is then positive, and still discrete with graded finitedimensional eigenspaces.

- We define for $0 \leq \lambda<\mu$ the finite-dimensional vector spaces

$$
\mathcal{H}_{ \pm}^{\lambda, \mu}:=\bigoplus_{\lambda \leq \epsilon<\mu} \operatorname{Eig}\left(D_{ \pm}^{2}, \epsilon\right) ;
$$

Notice that

$$
\mathcal{H}_{ \pm}^{\lambda, \mu} \cong \mathcal{H}_{ \pm}^{\lambda, \epsilon} \oplus \mathcal{H}_{ \pm}^{\epsilon, \mu}
$$

The operator D restricts to a linear operator

$$
D_{ \pm}^{\lambda, \mu}:=\left.D\right|_{\mathcal{H}_{ \pm}^{\lambda, \mu}}: \mathcal{H}_{ \pm}^{\lambda, \mu} \longrightarrow \mathcal{H}_{\mp}^{\lambda, \mu} .
$$

- We define

$$
\mathcal{H}^{\lambda, \mu}:=\mathcal{H}_{+}^{\lambda, \mu} \oplus\left(\mathcal{H}_{-}^{\lambda, \mu}\right)^{*} .
$$

Then, we have

$$
\operatorname{det} D_{+}^{\lambda, \mu} \in \operatorname{det}\left(\mathcal{H}_{+}^{\lambda, \mu}\right)^{*} \otimes \operatorname{det}\left(\mathcal{H}_{-}^{\lambda, \mu}\right)=\operatorname{det} \mathcal{H}^{\lambda, \mu} .
$$

- Now we suppose that $J: \mathcal{H} \longrightarrow \mathcal{H}$ is an odd, anti-linear, anti-self-adjoint isomorphism that commutes with D. Anti-linear means it is linear as a map $\mathcal{H} \longrightarrow \overline{\mathcal{H}}$ to the opposed vector space. We define the linear anti-self-adjoint operator

$$
\not D^{\lambda, \mu}:=J_{-} \circ D_{+}^{\lambda, \mu}: \mathcal{H}_{+}^{\lambda, \mu} \longrightarrow \overline{\mathcal{H}_{+}^{\lambda, \mu}} .
$$

Then consider the skew-symmetric operator

$$
\alpha^{\lambda, \mu}: \mathcal{H}_{+}^{\lambda, \mu} \longrightarrow\left(\mathcal{H}_{+}^{\lambda, \mu}\right)^{*} \quad \text { with } \quad \alpha^{\lambda, \mu}(\psi)(\varphi):=\left\langle\psi, \not D^{\lambda, \mu}(\varphi)\right\rangle,
$$

which we regard as an element $\alpha^{\lambda, \mu} \in \Lambda^{2}\left(\mathcal{H}_{+}^{\lambda, \mu}\right)^{*}$. Its pfaffian is denoted

$$
\operatorname{pfaff}^{\lambda, \mu} \in \operatorname{det}\left(\mathcal{H}_{+}^{\lambda, \mu}\right)^{*} .
$$

Now we consider a family of odd self-adjoint elliptic operators D_{b} parameterized by a (possibly infinite-dimensional manifold) B.

- We define for $\mu \geq 0$ the open sets

$$
U_{\mu}:=\left\{b \in B \mid \mu \notin \operatorname{spec}\left(D_{b}^{2}\right)\right\} .
$$

For each $0 \leq \lambda<\mu$ the vector spaces $\mathcal{H}_{b, \pm}^{\lambda, \mu}$ form smooth vector bundles over U_{μ}. The elements $\operatorname{det} D_{b,+}^{\lambda, \mu}$ form a smooth section of $\operatorname{det} \mathcal{H}^{\lambda, \mu}$. The elements pfaff ${ }^{\lambda}, \mu$ form a smooth section of $\operatorname{det}\left(\mathcal{H}_{+}^{\lambda, \mu}\right)^{*}$.

- We have over U_{μ} the line bundle $\operatorname{det} \mathcal{H}^{0, \mu}$ and over $U_{\mu} \cap U_{\nu}$ with $\nu>\mu$ the isomorphism

$$
\mathrm{id} \otimes \operatorname{det} D_{+}^{\mu, \nu}: \operatorname{det} \mathcal{H}^{0, \mu} \longrightarrow \operatorname{det} \mathcal{H}^{0, \mu} \otimes \operatorname{det} \mathcal{H}^{\mu, \nu}=\operatorname{det} \mathcal{H}^{0, \nu} .
$$

The determinant line bundle $\operatorname{Det}(D)$ over B is glued from this data. The local sections det $D_{+}^{0, \mu}$ glue to a global smooth section det of $\operatorname{Det}(D)$.

- We have over U_{μ} the line bundle $\operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*}$ and over $U_{\mu} \cap U_{\nu}$ with $\nu>\mu$ the isomorphism

$$
\mathrm{id} \otimes \operatorname{pfaff}{ }^{\mu, \nu}: \operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*} \longrightarrow \operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*} \otimes \operatorname{det}\left(\mathcal{H}_{+}^{\mu, \nu}\right)^{*}=\operatorname{det}\left(\mathcal{H}_{+}^{0, \nu}\right)^{*} .
$$

The Pfaffian line bundle \mathcal{P} faff (D) over B is glued from this data. The local sections pfaff ${ }^{0}$ g glue to a global smooth section pfaff of \mathcal{P} faff (\mathbb{D}).

- There is an isomorphism

$$
\mathcal{P} \text { faff }(\not D) \otimes \mathcal{P} \text { faff }(\not D) \cong \operatorname{Det}(D)^{*}
$$

of line bundles over B which is over U_{μ} given by

$$
\left.\mathrm{id} \otimes \operatorname{det} J\right|_{\operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*}}: \operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*} \otimes \operatorname{det}\left(\mathcal{H}_{+}^{0, \mu}\right)^{*} \longrightarrow \operatorname{det}\left(\mathcal{H}^{0, \mu}\right)^{*}
$$

Under this isomorphism, the section pfaff \otimes pfaff corresponds to the section det.
Geometric data on the bundles $\operatorname{Det}(D)$ and \mathcal{P} faff $(\not D)$:

- The determinant bundle $\operatorname{Det}(D)$ comes equipped with a hermitian metric, the "Quillen metric", and a unitary connection, the "Bismut-Freed connection".
- Via the isomorphism \mathcal{P} faff $(D) \otimes \mathcal{P} f a f f(D) \cong \operatorname{Det}(D)$ one induces metric and connection on \mathcal{P} faff $(D D)$.

3 The Quantum Integrand

Linear algebra:

- Let V be a finite-dimensional vector space, $\operatorname{dim} V=2 n$. The Berezinian is the linear map

$$
\int^{B}: \Lambda^{*} V^{*} \longrightarrow \operatorname{det} V^{*}
$$

which is defined on monomials $\alpha \in \Lambda^{k} V^{*}$ by

$$
\int^{B} \alpha= \begin{cases}\alpha & \text { if } k=2 n \\ 0 & \text { else }\end{cases}
$$

Remark: usually, if V has an orientation $\omega \in \operatorname{det} V$, one understands the Berezinian as the composition of the one above with the pairing $\operatorname{det} V^{*} \longrightarrow \mathbb{K}: \alpha \longmapsto \alpha(\omega)$.

- For $\alpha \in \Lambda^{2} V^{*}$ we have:

$$
\int^{B} \exp (\alpha)=\operatorname{pfaff}(\alpha)
$$

Return to the situation of the supersymmetric sigma model.

- The parameter space is $B:=C^{\infty}(\Sigma, M)$.
- The spinor bundle $S(\Sigma)$ is $\mathbb{Z} / 2 \mathbb{Z}$-graded and has by dimensional reasons an odd quaternionic structure.
- We let W be the real $\mathbb{Z} / 2 \mathbb{Z}$-graded vector bundle over M with $W_{+}:=T M$ and W_{-} the trivial bundle of rank $\operatorname{dim} M$. For each $\phi \in B$, we have a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector bundle $V:=S(\Sigma) \otimes_{\mathbb{R}} \phi^{*} W$ over Σ. Notice that $V_{+} \cong V_{-} \cong S(\Sigma) \otimes_{\mathbb{R}} \phi^{*} T M$.
- Since W is a real vector bundle, the quaternionic structure of $S(\Sigma)$ extends to V. Furthermore, since $S(\Sigma)$ and W carry connections induced from the Levi-Civita connections on Σ and M, respectively, V carries a connection.
- For $\phi \in B$ we have the $\mathbb{Z} / 2 \mathbb{Z}$-graded Hilbert space $\mathcal{H}_{\phi}:=\Gamma(V)$ of smooth sections into V, equipped with the L_{2} scalar product

$$
(\psi, \varphi) \longmapsto \int_{\Sigma}\langle\psi, \varphi\rangle \operatorname{dvol}_{\Sigma}
$$

- The Dirac operator

$$
D_{\phi}: \mathcal{H}_{\phi} \longrightarrow \mathcal{H}_{\phi}
$$

is given as usual by the covariant derivative in V followed by Clifford multiplication on $S(\Sigma)$. The quaternionic structure on V defines a quaternionic structure J_{ϕ} on \mathcal{H}_{ϕ}.

- Now consider $\mu \geq 0$ and $\phi \in U_{\mu}$. We have the finite-dimensional vector space $\mathcal{H}_{\phi,+}^{0, \mu}$ and the 2-form $\alpha_{\phi}^{0, \mu} \in \Lambda^{2}\left(\mathcal{H}_{\phi,+}^{0, \mu}\right)^{*}$. Inserting the definition of $\alpha_{\phi}^{0, \mu}$ we have the welldefined equality

$$
\int^{B} \exp \left(\int_{\Sigma}\left\langle-, \not D_{\phi}^{0, \mu}-\right\rangle \operatorname{dvol}_{\Sigma}\right)=\operatorname{pfaff}(\phi)
$$

Since the right hand side is independent of μ, the left hand side is also independent. Dropping the index μ, and adding some ψ 's as extra notation produces exactly the fermionic path integral.

4 Geometric String Structures

A spin manifold M is called string manifold, if the class

$$
\frac{1}{2} p_{1}(T M) \in \mathrm{H}^{4}(M, \mathbb{Z})
$$

vanishes. Overview:

1. Realize the class $\frac{1}{2} p_{1}(T M)$ as a geometrical object over M, the "Chern-Simons 2gerbe" $\mathbb{C S}_{M}$.
2. Define a string structures on M as a trivialization of \mathbb{C}_{M}. Thus, $\frac{1}{2} p_{1}(T M)=0$ if and only if M admits a string structure.
3. The Chern-Simons 2-gerbe $\mathbb{C S}_{M}$ carries a canonical connection defined from the Riemannian metric on M. Define a geometric string structure on M as connectionpreserving trivialization of $\mathbb{C S}_{M}$.

Construction of the Chern-Simons 2-gerbe $\mathbb{C S}_{M}$:

- To construct a bundle 2-gerbe, we need a surjective submersion. For \mathbb{C}_{M} we take the spin frame bundle $P_{\operatorname{Spin}(n)} \longrightarrow M$.
- Next we need a bundle gerbe over the 2-fold fibre product $P_{\operatorname{Spin}(n)}^{[2]}$. Notice that there is a smooth map

$$
g: P_{\operatorname{Spin}(n)}^{[2]} \longrightarrow \operatorname{Spin}(n)
$$

the "universal transition function". We take the pullback of the basic gerbe \mathcal{G} over $\operatorname{Spin}(n)$ along g.

- Finally we need coherence structure over the higher fibre products of $P_{\operatorname{Spin}(n)}$. This structure is provided by a multiplicative structure on \mathcal{G}.
- The calculation that $c_{3}\left(\mathbb{C S}_{M}\right)=\frac{1}{2} p_{1}(T M)$ uses that the characteristic class of the multiplicative basic gerbe \mathcal{G} in $\mathrm{H}^{4}(B \operatorname{Spin}(n), \mathbb{Z})$ is the universal class $\frac{1}{2} p_{1}$.
- For the connection on \mathbb{C}_{M}, we need a 3-form on $P_{\operatorname{Spin}(n)}$. We take the Chern-Simons 3 -form associated to the Levi-Cevita connection A on $P_{\operatorname{Spin}(n)}$:

$$
C S(A):=\langle A \wedge \mathrm{~d} A\rangle+\frac{2}{3}\langle A \wedge A \wedge A\rangle \in \Omega^{3}\left(P_{\operatorname{Spin}(n)}\right)
$$

The remaining structure for the connection is provided by a connection on the basic gerbe \mathcal{G}. The curvature of the connection on $\mathbb{C S}_{M}$ is the Pontryagin 4-form

$$
\operatorname{curv}\left(\mathbb{C S}_{M}\right)=\frac{1}{2}\left\langle F_{A} \wedge F_{A}\right\rangle \in \Omega^{4}(M)
$$

Trivializations of \mathbb{C}_{M}, i.e. string structures on M :

- A trivialization \mathbb{T} of \mathbb{C}_{M} is a bundle gerbe \mathcal{S} over $P_{\operatorname{Spin}(n)}$ together with an isomorphism

$$
\mathcal{A}: g^{*} \mathcal{G} \otimes \operatorname{pr}_{2}^{*} \mathcal{S} \longrightarrow \operatorname{pr}_{1}^{*} \mathcal{S}
$$

of bundle gerbes over $P_{\operatorname{Spin}(n)}^{[2]}$ plus coherence structure on the higher fibre products. Remark: The isomorphism \mathcal{A} restricts over each fibre $F \cong \operatorname{Spin}(n)$ of $P_{\operatorname{Spin}(n)}$ to an isomorphism $\left.\mathcal{S}\right|_{F} \cong \mathcal{G}$. In particular,

$$
\left.c_{3}(\mathcal{S})\right|_{F}=1 \in \mathbb{Z}=\mathrm{H}^{3}(\operatorname{Spin}(n), \mathbb{Z})
$$

This reproduces the definition of s string structure given by Stolz and Teichner [ST04].

- Being connection-preserving is actually additional structure for trivializations of 2gerbes, not just a property. Namely, it is a connection on the gerbe \mathcal{S} such that \mathcal{A} is connection-preserving.
- A connection-preserving trivialization \mathbb{T} determines a 3 -form $H_{\mathbb{T}} \in \Omega^{3}(M)$ by

$$
\operatorname{pr}^{*} H_{\mathbb{T}}=\operatorname{curv}(\mathcal{S})+C S(A)
$$

It satisfies $\mathrm{d} H_{\mathbb{T}}=\frac{1}{2}\left\langle F_{A} \wedge F_{A}\right\rangle$.
Action by gerbes:

- If $\mathbb{T}=(\mathcal{S}, \mathcal{A})$ is a string structure and \mathcal{K} is a bundle gerbe over M, there is a new string structure $\mathbb{T} \otimes \mathcal{K}$ defined by $\mathcal{S}^{\prime}:=\mathcal{S} \otimes \operatorname{pr}^{*} \mathcal{K}$ and $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{id}_{\mathrm{pr}}{ }^{*} \mathcal{K}$. This action is simply transitive on equivalence classes.
- If \mathbb{T} is a geometric string structure, and \mathcal{K} is a bundle gerbe with connection over M, then $\mathbb{T} \otimes \mathcal{K}$ is again a geometric string structure. The 3 -forms satisfy

$$
H_{\mathbb{T} \otimes \mathcal{K}}=H_{\mathbb{T}} \otimes \operatorname{curv}(\mathcal{K}) .
$$

5 Transgression

Suppose \mathbb{G} is a 2 -gerbe with connection over M, and Σ is a closed oriented surface.

- For a smooth map $\phi: \Sigma \longrightarrow M$, define the set T_{ϕ} of (equivalence classes of) connection-preserving trivializations of $\phi^{*} \mathbb{G}$. Via the action

$$
\mathbb{T} \longmapsto \mathbb{T} \otimes \mathcal{K}
$$

this is a torsor over the group of isomorphism classes of gerbes with (necessarily flat) connection over Σ, which are classified by $\mathrm{H}^{2}(\Sigma, \mathrm{U}(1)) \cong \mathrm{U}(1)$. The $\mathrm{U}(1)$-torsors T_{ϕ} fit together to a Fréchet principal U(1)-bundle $\mathscr{T}_{\mathbb{G}}$ over $C^{\infty}(\Sigma, M)$.

- A connection on $\mathscr{T}_{\mathbb{G}}$ is obtained from the parallel transport in the 2 -gerbe \mathbb{G}.
- In differential cohomology, the assignment $\mathbb{G} \longmapsto \mathscr{T}_{\mathbb{G}}$ realizes the transgression homomorphism

$$
\hat{\mathrm{H}}^{4}(M, \mathbb{Z}) \longrightarrow \hat{\mathrm{H}}^{2}\left(C^{\infty}(\Sigma, M)\right)
$$

Applied to the Chern-Simons 2-gerbe we get:

- A principal $\mathrm{U}(1)$-bundle $\mathscr{T}_{\mathbb{C}}^{M}$ over $C^{\infty}(\Sigma, M)$ with connection.
- A geometric string structure (i.e. a connection-preserving trivialization \mathbb{T} of $\mathbb{C} \mathbb{S}_{M}$) defines a global smooth section

$$
s_{\mathbb{T}}: C^{\infty}(\Sigma, M) \longrightarrow \mathscr{T}_{\mathbb{C}}^{M} \text { }: \phi \longmapsto \phi^{*} \mathbb{T} .
$$

- Fact 1: if $\omega \in \Omega^{1}\left(\mathscr{T}_{\mathbb{S}}^{M}\right.$ $)$ is the connection 1-form on $\mathscr{T}_{\mathbb{C}}^{M}$, then

$$
s_{\mathbb{T}}^{*} \omega=\int_{\Sigma} \operatorname{ev}^{*} H_{\mathbb{T}} .
$$

- Fact 2: if \mathcal{K} is a bundle gerbe with connection over M, then

$$
s_{\mathbb{T} \otimes \mathcal{K}}=s_{\mathbb{T}} \cdot \operatorname{Hol}_{\mathcal{K}} .
$$

Bunke constructs [Bun] a connection-preserving isomorphism

$$
B: \mathscr{T}_{\mathbb{C}}^{M} \boldsymbol{} \longrightarrow \mathcal{P f a f f}\left(\not D_{M}\right) .
$$

Outline of the construction:

- We work over a fixed point $\phi: \Sigma \longrightarrow M$. Let $\varphi: \phi^{*} P_{\operatorname{Sin}(n)} \longrightarrow \operatorname{Spin}(n)$ be a trivialization of the spin frame bundle of M. By functorality, it induces a trivialization \mathbb{T}_{φ} of $\phi^{*} \mathbb{C}_{M}$, namely the one with $\mathcal{S}_{\varphi}:=\varphi^{*} \mathcal{G}$ and \mathcal{A} given by the multiplicative structure on \mathcal{G}.
- We look at the family of (generalized) Dirac operators parameterized by \mathbb{R}, which is over $t \in \mathbb{R}$

$$
D_{t}^{\varphi}=D_{\phi}+1 \otimes t Q^{\varphi} \quad \text { with } \quad Q^{\varphi}=\left(\begin{array}{cc}
0 & \varphi^{*} \\
\varphi & 0
\end{array}\right)
$$

where φ is considered as a trivialization $\phi^{*} T M \longrightarrow \mathbf{I}$ of the tangent bundle. The associated Pfaffian bundle over \mathbb{R} is denoted \mathcal{P} faff $\left(D^{\varphi}\right)$; it comes with its section $\operatorname{pfaff}\left(D^{\varphi}\right)$.

- The Laplacian of D_{t}^{φ} is

$$
\left(D_{t}^{\varphi}\right)^{2}=D_{\phi}^{2}+t D_{\phi} Q^{\varphi}+t^{2}\left(Q^{\varphi}\right)^{2} .
$$

The t^{2}-term is dominating, and so there exists $t_{0} \geq 0$ such that D_{t}^{φ} over $\left[t_{0}, \infty\right)$ is positive, in particular invertible. Thus, $\operatorname{pfaff}\left(D^{\varphi}\right)(t) \neq 0$ for all $t \geq t_{0}$.

- For $x \geq t_{0}$ consider the element

$$
s_{x}^{\varphi}(t):=p t_{\gamma_{x, t}}^{\nabla}\left(\operatorname{pfaff}\left(\not D^{\varphi}(x)\right)\right)
$$

where $p t^{\nabla}$ denotes the parallel transport in $\mathcal{P} f a f f\left(D^{\varphi}\right)$, and $\gamma_{x, t}$ is the canonical path in \mathbb{R} from x to t. Since parallel transport is an isometry, $s_{x}^{\varphi}(t)$ is non-zero and can be normalized to unit length.

- The limit

$$
s^{\varphi}(t):=\lim _{x \rightarrow \infty} s_{x}^{\varphi}(t)
$$

exists in a certain sense and defines a smooth nowhere vanishing section of $\mathcal{P} f a f f\left(D^{\varphi}\right)$. In particular,

$$
0 \neq s^{\varphi}(0) \in \mathcal{P} f a f f\left(\not D_{M}\right)
$$

- Define the isomorphism by

$$
B: \mathscr{T}_{\mathbb{C S}_{M}} \longrightarrow \mathcal{P} \text { faff }\left(\not D_{M}\right): \mathbb{T} \longmapsto s^{\varphi}(0) \cdot \operatorname{Hol}_{\mathcal{K}}(\Sigma)
$$

where φ is some choice of a trivialization, and \mathcal{K} is a bundle gerbe with connection over Σ such that $\phi^{*} \mathbb{T}=\mathbb{T}_{\varphi} \otimes \mathcal{K}$.

6 Concluding Remarks

1. The section $s_{\mathbb{T}}$ of $\mathscr{T}_{\mathbb{C}}^{M}$ depends on the geometric part of the string structure \mathbb{T}. In order to see this, consider a 2 -form $\eta \in \Omega^{2}(M)$ and the trivial bundle gerbe \mathcal{I}_{η} with connection η. Then, $\mathbb{T} \otimes \mathcal{I}_{\eta}$ has the same underlying string structure as \mathbb{T}. However, we have

$$
s_{\mathbb{T} \otimes \mathcal{I}_{\eta}}(\phi)=s_{\mathbb{T}}(\phi) \cdot \exp \left(\int_{\Sigma} \phi^{*} \eta\right)
$$

2. Wess-Zumino term: this is an additional term in the exponentiated action of the bosonic sigma model. A Wess-Zumino term is given by fixing a bundle gerbe \mathcal{K} with connection over M, then

$$
\mathcal{A}_{\mathcal{K}}^{W Z}(\phi):=\operatorname{Hol}_{\mathcal{K}}(\phi)
$$

In the supersymmetric context, it can be compensated in the fermionic part of the action:

$$
\mathcal{A}_{\mathbb{T}}^{\text {susy }} \cdot \mathcal{A}_{\mathcal{K}}^{W Z}=\mathcal{A}_{\mathbb{T} \otimes \mathcal{K}}^{\text {susy }}
$$

3. Heuristical considerations with path integrals suggest that the fermionic path integral requires a gauge fixing [FM06]. Gauge fixing introduces new terms to the action of the supersymmetric sigma model.
4. In M-theory there are yet more terms. In particular, the Dirac operator on Σ is not twisted by the tangent bundle $T M$ alone, but rather by a tensor product of $T M$ and some principal E_{8}-bundle P over M.
5. For $\Sigma=S^{1} \times S^{1}$ the torus, spin structures on Σ are determined by complex structures, which in turn are determined by a complex number $q \in \mathbb{C}$. The assignment

$$
q \longmapsto \int_{C^{\infty}\left(\Sigma_{q}, M\right)} \mathcal{A}^{\text {susy }}(\phi) \mathrm{d} \phi
$$

is supposed to be a modular form that represents the Witten genus of the target manifold M.

References

[Bun] U. Bunke, String Structures and Trivialisations of a Pfaffian Line Bundle, preprint. [arxiv:0909.0846]
[FM06] D. S. Freed and G. W. Moore, Setting the Quantum Integrand of M-Theory, Commun. Math. Phys. 263 (1), 89-132 (2006). [arxiv:hep-th/0409135]
[Fre87] D. S. Freed, On Determinant Line Bundles, in Mathematical Aspects of String Theory, edited by S. T. Yau, World Scientific, 1987.
[ST04] S. Stolz and P. Teichner, What is an elliptic Object?, volume 308 of London Math. Soc. Lecture Note Ser., pages 247-343, Cambridge Univ. Press, 2004.
[Wal] K. Waldorf, String Connections and Chern-Simons Theory, preprint. [arxiv:0906.0117]

