Non-geometric T-duals and non-abelian gerbes

Konrad Waldorf Universität Greifswald

joint work with Thomas Nikolaus (Universität Münster)

Workshop "Quantum Spacetime '18" February 19-23, 2018, Sofia, Bulgaria A string background consists of the following data:

- A manifold M ("target space")
- ► A metric g on M
- ► A bundle gerbe *G* with connection ("B-field")

We recall:

- The curvature of \mathcal{G} is a 3-form $H \in \Omega^3(M)$
- ▶ The **Dixmier-Douady class** of G is a class $\xi \in H^3(M, \mathbb{Z})$
- ▶ 2-forms $B \in \Omega^2(M)$ correspond to the case $\xi = 0$
- Neither H nor ξ nor both determine \mathcal{G}

Bundle gerbes (with or without connections) form a sheaf of bicategories. They are examples of so-called higher-categorical structure.

This perspective has proved to be very successful, for studying...

- Topological effects, such as discrete torsion and Aharonov-Bohm effects: GawędzkiCarey-Mickelsson-Murray...
- D-branes, in particular in their relation to twisted K-theory: Kapustin, Gawędzki-Reis, Carey-Johnson-Murray...
- Target space description of defect lines and defect networks: Fuchs-Schweigert-W, Runkel-Suszek...
- Orientifolds: Schreiber-Schweigert-W, Gawędzki-Suszek-W, Hekmati-Murray-Szabo-Vozzo...
- Geometric quantization of string backgrounds: Bunk-Szabo, Szabo-Sämann...

T-backgrounds

In toroidal string compactifications, the target space is the total space of a principal \mathbb{T}^n -bundle,

$$M = E \circlearrowleft \mathbb{T}^n$$

$$\downarrow^{\pi}_X$$

T-duality is a relation on the set of toroidal string backgrounds.

In order to concentrate only on the underlying topology, **T-backgrounds** have been defined as a pair (E, \mathcal{G}) of a \mathbb{T}^n -principal bundle and a bundle gerbe \mathcal{G} over E; metric and connections are ripped off.

T-duality correspondences

Two T-backgrounds (E_1, \mathcal{G}_1) and (E_2, \mathcal{G}_2) are T-dual, if there exists a **T-duality correspondence**: a bundle gerbe isomorphism

$$\mathcal{D}: p_1^*\mathcal{G}_1 \longrightarrow p_2^*\mathcal{G}_2$$

over the correspondence space

that satisfies the so-called Poincaré condition $\mathcal{P}_x(\mathcal{D})$ for every point $x \in X$.

Remarks:

- Above definition of T-backgrounds and T-duality was coined by Bunke-Rumpf-Schick, based on work by Bouwknegt, Evslin, Hannabuss, Mathai,....
- It is equivalent to an approach via non-commutative topology pursued by Mathai-Rosenberg, Brodzki-Mathai-Rosenberg-Szabo,....
- Including the bundle gerbe is essential: mind the "topology change from H-flux"
- ► T-duality is symmetric, but neither reflexive nor transitive.
- Particularly interesting for topologists is the existence of a T-duality isomorphism in twisted K-theory,

$$K^*(E_1,\xi_1)\cong K^{*+n}(E_2,\xi_2).$$

T-dualizability

Main question: given a T-background (E, G), does it have any T-duals, and if so, how many?

A complete answer was obtained by Bunke-Rumpf-Schick. The cohomology of E has a filtration

$$\mathrm{H}^{3}(E,\mathbb{Z}) = F_{0} \supseteq F_{1} \supseteq F_{2} \supseteq F_{3} \cong \mathrm{H}^{3}(X,\mathbb{Z}).$$

On the level of differential forms, a form $H \in \Omega^3(E)$ is in F_i if it is locally of the form $H = dx_1 \wedge ... \wedge dx_i \wedge ...$, where $x_1, ..., x_i$ are coordinates of X.

We say that a T-background (E, G) is of class F_i when i is the biggest number with $\xi_G \in F_i$.

Theorem (Bunke-Rumpf-Schick)

- ▶ A T-background has T-duals if and only if it is of class F₂.
- In this case, two T-duals are related by a certain so(n, ℤ)-transformation.

Here, $\mathfrak{so}(n,\mathbb{Z})$ is the additive group of skew-symmetric $(n \times n)$ -matrices with integer entries.

For n = 1, every T-background is of class F_2 , and since $\mathfrak{so}(1,\mathbb{Z}) = \{0\}$, its T-dual is unique. This defines a **T-duality** transformation. Such a transformation does not exist for n > 1.

Non-geometric T-folds

If a T-background is only of class F_1 (i.e., locally trivial), it doesn't have any T-duals, they are "mysteriously missing" (Mathai-Rosenberg) or "non-geometric" (Hull).

Non-commutative geometry allows to define these non-geometric T-duals as bundles of non-commutative tori (Mathai-Rosenberg,...).

An example of a T-background in class F_1 is

$$\begin{array}{c} \mathbb{T}^3 = \mathbb{T}^1 \times \mathbb{T}^2 \circlearrowleft \mathbb{T}^2 \\ \downarrow \\ \mathbb{T}^1 \end{array}$$

and over \mathbb{T}^3 the bundle gerbe with $\xi = \mathrm{pr}_1^* \gamma \cup \mathrm{pr}_2^* \gamma \cup \mathrm{pr}_3^* \gamma$, where $\gamma \in \mathrm{H}^1(\mathbb{T}^1, \mathbb{Z})$ is a generator.

Higher geometry for non-geometric T-duals

In joint work with Thomas Nikolaus, we propose an alternative treatment of **non-geometric T-duals** in the framework of ordinary (commutative) but higher-categorical geometry.

Our basic observation: every F_1 background is **locally** of class F_2 and so has locally defined T-duals.

We fabricate a new structure we call a half-geometric T-duality correspondence. It consists of locally defined T-duals glued together under the $\mathfrak{so}(n, \mathbb{Z})$ -transformations.

Our central technique is to use categorical Lie groups as representing objects for sheaves of bicategories.

Categorical Lie groups are the counterparts of ordinary Lie groups and the central objects in higher gauge theory. They can be seen as groups G whose group elements g themselves have gauge symmetries (automorphisms). The corresponding gauge field are non-abelian bundle gerbes of Aschieri-Cantini-Jurco, Schreiber-W, Nikolaus-W.

A simple example is the group BU(1), where $G = \{e\}$ and the symmetry group of e is U(1). The bundle gerbe G in a string background is a BU(1) gauge field.

Other categorical Lie groups are **central extensions** of ordinary Lie groups G by BU(1):

$$1 \longrightarrow BU(1) \longrightarrow \mathcal{G} \longrightarrow \mathcal{G} \longrightarrow 1.$$

They are classified by $H^4(BG, \mathbb{Z})$.

For example, the famous **String 2-group** is a central extension of Spin(n), and corresponds to a generator of $\text{H}^4(B\text{Spin}(n),\mathbb{Z}) = \mathbb{Z}$.

Categorical Lie groups for T-duality

We use categorical tori of Ganter, which are central extensions

$$BU(1) \longrightarrow \mathcal{T}_I \longrightarrow \mathbb{T}^{2n}$$

depending on a symmetric bilinear form $I \in Sym^2(\mathbb{Z}^{2n})$.

The class of \mathcal{T}_I in $\mathrm{H}^4(B\mathbb{T}^{2n},\mathbb{Z})$ is given by I under the Chern-Weil isomorphism.

Relevant for T-duality is

$$I_n = \begin{pmatrix} 0 & E_n \\ E_n & 0 \end{pmatrix},$$

and we write \mathbb{TD}_n for the categorical torus \mathcal{T}_{l_n} .

We prove the following key result:

- ► Isomorphism classes of TD-gerbes are in bijection with equivalence classes of T-duality correspondences.
- The so(n, Z)-transformations of Bunke-Rumpf-Schick on T-duality correspondences can be implemented as a strict action by automorphisms of TD.

Then, we perform an abstract construction in higher-categorical geometry: we consider the semi-direct product

$$\mathbb{TD}^{\frac{1}{2}\text{-}geo} := \mathbb{TD} \ltimes \mathfrak{so}(n,\mathbb{Z}).$$

This gives a new categorical Lie group. The corresponding non-abelian bundle gerbes are by definition our **half-geometric T-duality correspondences**.

We prove that half-geometric T-duality correspondences have the following properties:

- ► The effect of the so(n, Z)-action on TD is that the left leg of a half-geometric T-duality correspondence is a well-defined T-background of class F₁.
- The right leg is not preserved under the action and does not yield any T-background: it is "non-geometric".
- ► **Every** T-background of class *F*₁ is the left leg of a **unique** half-geometric T-duality correspondence.

We see this as a generalized T-duality transformation, valid for any n and all T-backgrounds of class F_1 .

Bundle gerbes can be accessed by **local data**. The following is the local data of a half-geometric T-duality:

- ▶ transition data for two torus bundles: $a_{ij}, b_{ij} : U_i \cap U_j \longrightarrow \mathbb{R}^n$
- ▶ matrices $B_{ij} \in \mathfrak{so}(n, \mathbb{Z})$ satisfying $B_{ik} = B_{ij} + B_{jk}$
- ▶ winding numbers for two tori: n_{ijk}, m_{ijk} ∈ Zⁿ, with gluing conditions for the tori:

$$a_{ik} = n_{ijk} + a_{jk} + a_{ij}$$
$$b_{ik} = m_{ijk} + b_{jk} + b_{ij} + B_{jk}a_{ij}$$

Here we see that the left leg gives a genuine torus bundle, while the gluing of the right leg is spoiled

► transition data for a gerbe: t_{ijk} : U_i ∩ U_j ∩ U_k → U(1), subject to a complicated gluing condition depending on the matrices B_{ij}.

Example

Under appropriate choices of sections, one can show that to the T-background

$$(\mathbb{T}^3,\xi=\mathrm{pr}_1^*\gamma\cup\mathrm{pr}_2^*\gamma\cup\mathrm{pr}_3^*\gamma)$$

over \mathbb{T}^1 corresponds the half-geometric T-duality correspondence with all local data trivial except for the matrices B_{ij} , whose non-trivial entries satisfy

$$\gamma = [B_{ij}^{12}] = -[B_{ij}^{21}] \in \check{\mathrm{H}}^1(\mathbb{T}^1, \mathbb{Z}).$$

Remarks: T-duality group

We also compute the (higher) automorphism group $\operatorname{Aut}(\mathbb{TD})$ and show that

$$\pi_0(\operatorname{Aut}(\mathbb{TD})) = \operatorname{O}^{\pm}(n, n, \mathbb{Z})$$

This group contains the split-orthogonal group $O(n, n, \mathbb{Z})$ as a subgroup of index two. It appeared already in work of Mathai-Rosenberg.

One can regard $\mathfrak{so}(n,\mathbb{Z})$ as a subgroup of $O(n, n, \mathbb{Z})$, and we prove that $\operatorname{Aut}(\mathbb{TD})$ splits canonically over this subgroup. Our action of $\mathfrak{so}(n,\mathbb{Z})$ on \mathbb{TD} is induced via this splitting.

Remarks: T-folds

Our half-geometric T-duality correspondences can be seen as a baby version of Hull's T-folds, in terms of the doubled-geometry perspective of Hull.

Indeed, the matrices B_{ij} of a half-geometric T-duality correspondence form a globally defined (and non-trivial) $\mathfrak{so}(n,\mathbb{Z})$ -bundle over X. A "polarization" would be a local trivialization of that bundle.

Under such a trivialization, the half-geometric T-duality correspondence reduces to an ordinary T-duality correspondence between the globally defined left leg and a locally defined right leg. Its correspondence space is a locally defined \mathbb{T}^{2n} -principal bundle; that's the doubled geometry.

Summary

- Topological T-duality correspondences only exist between T-backgrounds of class F₂.
- Half-geometric T-duality correspondences exist between left legs of class F₁ and non-geometric right legs.
- There is a generalized T-duality transformation: every T-background of class F₁ can be extended in a unique way to a half-geometric T-duality correspondence.
- Our treatment of half-geometric T-duality correspondences explores new examples of categorical Lie groups and their associated non-abelian gerbes.

References

P. Aschieri, L. Cantini, and B. Jurco, "Nonabelian bundle gerbes, their differential geometry and gauge theory". *Commun. Math. Phys.*, 254:367–400, 2005. [arxiv:hep-th/0312154]

P. Bouwknegt, J. Evslin, and V. Mathai, "T-Duality: Topology Change from H-flux". *Commun. Math. Phys.*, 249(2):383–415, 2004.

P. Bouwknegt, J. Evslin, and V. Mathai, "Topology and H-flux of T-dual manifolds".

Phys. Rev. Lett., 92(18):181601, 2004.

P. Bouwknegt, K. Hannabuss, and V. Mathai, "T-duality for principal torus bundles".

J. High Energy Phys., 2004:018, 2004.

U. Bunke, P. Rumpf, and T. Schick, "The topology of T-duality for T^n -bundles". *Rev. Math. Phys.*, 18(10):1103–1154, 2006. []

- U. Bunke and T. Schick, "On the topology of T-duality". *Rev. Math. Phys.*, 17(17):77–112, 2005. [arxiv:math/0405132]

S. Bunk and R. J. Szabo, "Fluxes, bundle gerbes and 2-Hilbert spaces". Lett. Math. Phys., 107(10):1877–1918, 2017.

A. L. Carey, S. Johnson, and M. K. Murray, "Holonomy on D-branes".
 J. Geom. Phys., 52(2):186-216, 2002.
 [arxiv:hep-th/0204199]

A. L. Carey, J. Mickelsson, and M. K. Murray, "Bundle Gerbes Applied to Quantum Field Theory". *Rev. Math. Phys.*, 12:65–90, 2000. [arxiv:hep-th/9711133]

J. Fuchs, C. Schweigert, and K. Waldorf, "Bi-Branes: Target Space Geometry for World Sheet topological Defects". *J. Geom. Phys.*, 58(5):576–598, 2008. [arxiv:hep-th/0703145]

K. Gawędzki, "Topological actions in two-dimensional quantum field theories". In G. 't Hooft, A. Jaffe, G. Mack, K. Mitter, and R. Stora, editors, *Non-perturbative quantum field theory*, pages 101–142. Plenum Press, 1988. [] |]

- K. Gawędzki and N. Reis, "WZW branes and gerbes". *Rev. Math. Phys.*, 14(12):1281–1334, 2002. [arxiv:hep-th/0205233]

K. Gawędzki, R. R. Suszek, and K. Waldorf, "Bundle gerbes for orientifold sigma models". *Adv. Theor. Math. Phys.*, 15(3):621–688, 2011.

[arxiv:0809.5125]

K. Gawędzki, R. R. Suszek, and K. Waldorf, "The gauging of two-dimensional bosonic sigma models on world-sheets with defects". *Rev. Math. Phys.*, 302(2):513–580, 2011. [arxiv:1202.5808]

P. Hekmati, M. K. Murray, R. J. Szabo, and R. F. Vozzo, "Real bundle gerbes, orientifolds and twisted KR-homology". Preprint.

C. Hull and R. Reid-Edwards, "Gauge symmetry, T-duality and doubled geometry". *J. High Energy Phys.*, page 043, 2008.

C. Hull, "A geometry for non-geometric string backgrounds". *J. High Energy Phys.*, 10:65, 2005.

[]

A. Kapustin, "D-branes in a topologically nontrivial B-field". Adv. Theor. Math. Phys., 4:127, 2000. [arxiv:hep-th/9909089]

V. Mathai and J. Rosenberg, "On mysteriously missing T-duals, H-flux and the T-duality group". In Differential geometry and physics, volume 10 of Nankai Tracts Math., pages

350-358. World Sci. Publ., 2006.

V. Mathai and J. Rosenberg, "T-duality for torus bundles with H-fluxes via noncommutative topology. II. The high-dimensional case and the T-duality group".

Adv. Theor. Math. Phys., 10(1):123-158, 2006.

T. Nikolaus and K. Waldorf, "Four equivalent versions of non-abelian gerbes". Pacific J. Math., 264(2):355-420, 2013. [arxiv:1103.4815]

I. Runkel and R. R. Suszek, "Gerbe-Holonomy for Surfaces with Defect Networks" Adv. Theor. Math. Phys., 13:1137-1219, 2009. [arxiv:0808.1419]

ſ	1
L	1
ſ	-

C. Schommer-Pries, "Central extensions of smooth 2-groups and a finite-dimensional string 2-group". *Geom. Topol.*, 15:609–676, 2011. [arxiv:0911.2483]

- C. Sämann and R. J. Szabo, "Groupoid quantization of loop spaces". Preprint.

U. Schreiber, C. Schweigert, and K. Waldorf, "Unoriented WZW models and holonomy of bundle gerbes". *Commun. Math. Phys.*, 274(1):31–64, 2007. [arxiv:hep-th/0512283]

U. Schreiber and K. Waldorf, "Connections on non-abelian gerbes and their holonomy". *Theory Appl. Categ.*, 28(17):476–540, 2013.

[arxiv:0808.1923]