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Functorial field theories (FFTs) have been introduced by Atiyah
and Segal in order to axiomatize properties of quantum field
theories. They have also been used in Khovanov’s categorification
of the Jones polynomial. I will explain a geometric generalization
of FFTs due to Turaev, Stolz, and Teichner, which allows to treat
classical and quantum field theories in one setting. The main
examples will be Dirac’s theory of the electron in an
electromagentic field, and the 2d supersymmetric sigma model.
The FFT of the latter example requires the so-called stringor
bundle on loop space, whose existence on string manifolds has been
anticipated by Stolz and Teichner. I will report on recent work joint
with Peter Kristel about the construction of this bundle, which
involves Fock spaces, von Neumann algebras, and Connes fusion.



Functorial quantum field theories

Smooth functorial field theories

Spin geometry



Central in this talk is not a theorem, but a definition. In fact, this
talk is about how to find a well-suited definition, and how to
construct relevant examples.

The purpose is to find, on an outmost fundamental level, a
mathematical framework to treat field theories, physical theories of
particle fields and gauge fields.



Definition (Segal [Seg87], Atiyah [Ati88])

A d-dimensional functorial quantum field theory (FQFT) is a
symmetric monoidal functor

Z : Bordd → Vect.

Bordd is the category of oriented d-dimensional bordisms:

I Objects are (d − 1)-dimensional closed oriented manifolds Y .

I Morphisms Σ : Y0 → Y1 are d-dimensional compact oriented
manifolds Σ with ∂Σ = Y0 t Y1, up to diffeomorphism.

I Composition is defined by gluing along a common boundary.

I The monoidal structure is disjoint union.

Vect is the category of complex vector spaces, monoidal under the
tensor product.



That Z : Bordd → Vect is a symmetric monoidal functor means:

I It assigns to each (d − 1)-dimensional closed oriented
manifold Y a vector space Z (Y ).

I It assigns to each bordism Σ : Y0 → Y1 a linear map

Z (Σ) : Z (Y0) → Z (Y1).

I The gluing of bordisms corresponds to the composition of
linear maps:

Z (Σ′ ∪Y1 Σ) = Z (Σ′) ◦ Z (Σ).

I Disjoint union corresponds to the tensor product:

Z (Y t Y ′) ∼= Z (Y ) ⊗ Z (Y ′).



For example, suppose Z : Bord1 → Vect is a 1-dimensional FQFT.

I There are two objects, each sent to a vector space:

7→ V +

7→ V−

I Morphisms are sent to linear maps:

7→ idV +

7→ idV−

7→ d : V + ⊗ V− → C

7→ b : C→ V− ⊗ V +

All other objects and morphisms are disjoint unions and
compositions of these.



Remarks:

I Two conventions have been fixed und used here:

End-points of intervals have positive orientation, initial points
have negative orientation.

The orientation on the ingoing points (on the left hand side)
is reversed.

I One may interpret and are particle and anti-particle.

One may conclude from the interval morphisms that particles
move forward (from left to right) and anti-particles move
backwards (from right to left).

One may conclude from the curved morphisms that pairs of a
particle and an anti-particle can be created and annihilated.



We make two interesting observations. The first is to observe that
the following two bordisms are diffeomorphic.

7→ V + id⊗b
// V + ⊗ V− ⊗ V + d⊗id

// V +

and

7→ V + id // V +.

Hence, they go under the functor Z to the same linear maps. We
obtain an equality

(d ⊗ id) ◦ (id ⊗ b) = idV +.



Looking at negatively oriented intervals, we obtain an analogous
equality; together

(d ⊗ id) ◦ (id ⊗ b) = idV +

(id ⊗ d) ◦ (b ⊗ id) = idV−

These are algebraic conditions that identify V + and V− as
finite-dimensional dual vector spaces:

I d is the “death map”, the canonical pairing of a vector space
with its dual

I b the “birth map”, b(1) =
n∑

i=1

bi ⊗ bi , for a basis bi

Theorem (just proved)

1-dimensional FQFTs are the same as finite-dimensional vector
spaces.



The second observation is to compute the value of Z on the circle
S1 : ∅ → ∅. We decompose:

=

By functoriality, Z (S1) : C→ C is given by:

C b // V ∗ ⊗ V
τV∗,V

// V ⊗ V ∗ d // C

1 � //

n∑

i=1

bi ⊗ bi
� //

n∑

i=1

bi ⊗ bi � //

n∑

i=1

bi (bi ) = n

Thus, the value on the circle gives the only invariant we have: the
dimension of the vector space V .



Now we got to dimension two. Suppose Z : Bord2 → Vect is a
2-dimensional FQFT. All orientation/duality matters are as before,
and will now be ignored.

I Objects: 7→ V

I Morphisms:

7→ m : V ⊗ V → V

7→ tr : V → C

Thus, V is an algebra with a trace. In fact the following is true:

Theorem (Abrams [Abr96], Dijkgraaf [Dij89], Kock [Koc03])

2-dimensional FQFTs are the same as commutative Frobenius
algebras.



Remarks:

I Proof of associativity and commutativity: there are
orientation-preserving diffeomorphisms

∼=

∼=

I Value on the torus S1 × S1 gives the dimension of the
Frobenius algebra.



Motivation to consider FQFTs:

I We want to understand field theories from physics in a
fundamental and rigorous way.

The axioms of a symmetric monoidal functor

Z : Bordd → Vect

express the locality of the theory – a fundamental physical
requirement.

I Considering isomorphism classes of objects, an FQFT Z
reduces to a bordism invariant

ΩSO
d−1 → Z;

put differently, FQFTs categorify bordism invariants.

I It has surprising other applications; e.g., Khovanov’s link
homology.



Khovanov’s link homology (“categorified Jones polynomial”) for an
oriented planar link:

1. resolve crossings in all
possible ways:

2. introduce bordisms between
the results using the saddle:

Pictures are taken from [LP09].

3. Choose a Frobenius algebra and apply the associated 2d FQFT;
arrange the resulting linear maps in a chain complex.

Rasmussen: proved Milnor conjecture using k[x ]/(x2 − 1).
Kronheimer-Mrowka: Khovanov homology detects unknots.



Remark about extended FQFTs:

I It is interesting to introduce a second “vertical” composition
of surfaces:

I This leads to an extension of FQFTs to a higher-categorical
setting. The Baez-Dolan Cobordism Hypothesis states that
extended FQFT are completely determined by its value on the
point.

1d: X
2d: proved by Schommer-Pries [SP09].
general: proved by Lurie using Joyal’s ∞-categories [Lur09].



A little summary:

FQFTs: symmetric monoidal functors Z : Bordd → Vect

I 1d: the same as finite-dimensional vector spaces

I 2d: the same as commutative Frobenius algebras
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Spin geometry



In order to discuss physically relevant theories, we want to add
some kind of geometry to the bordisms, for example:

I Metrics, in d = 1, to describe Quantum Mechanics:

7→ V
eitH

// V

I Conformal structures, in order to describe Conformal Field
Theory (CFT).

I Spin structures, in order to describe fermions.

I Principal bundles with connections, in d = 3, to describe
Dijkgraaf-Witten theory or Chern-Simons theory.

I ...



Our main interest for this talk is to equip all manifolds with a
smooth map into a fixed manifold X . Usually, we think about this
manifold X as the spacetime of a classical field theory.

We obtain a new bordism category Bordd (X ):

I The objects are pairs (Y , φ), with φ : Y → X a smooth map.

I The morphisms are pairs (Σ, σ) : (Y0, φ0) → (Y1, φ1) with
σ : Σ → X a smooth map such that σ|∂Σ = φ0 t φ1.

Definition

A functorial field theory (FFT) over X is a symmetric monoidal
functor

Z : Bordd(X ) → Vect

Note that “Q” has been dropped!



Warning: the definition of the category Bordd(X ) is more difficult
than it seems here. The main problem is to define the composition
of bordisms, in such a way that the map

σ′ ∪ σ : Σ′ ∪Y1 Σ → X

is again smooth. This is usually done using fixed collars on all
bordisms. The main reference are the papers of Stolz-Teichner.

We remark that in Bordd(X ) to bordisms (Σ, σ) and (Σ′, σ′) are
equivalent if there exists a diffeomorphism ϕ : Σ → Σ′ that is the
identity on the boundary, and satisfies σ = σ′ ◦ ϕ.

There are versions of Bordd(X ) where instead a homotopy
σ ∼ σ′ ◦ ϕ is allowed. These are a bit easier to handle, and lead to
so-called Homotopy FFTs, as considered by Turaev [Tur10].



Suppose we have an action functional

S : C∞(Σ, X ) → R

for d-dimensional manifolds Σ. For example, when Σ = [a, b],

S(σ) = m

∫ b

a
‖dσ‖2dt

yields – via the principle of the least action – a point-like particle
of mass m moving without any forces through the spacetime X .

We get an FFT over X by putting

Z (Y , φ) := C and Z (Σ, σ) = e iS(σ).

Integration rules show that this is a functor:

S(constx) = 0 and S(σ2 ∗ σ1) = S(σ2) + S(σ1).

FFTs given by real-valued actions functionals are not so interesting!



Suppose, we have a vector bundle E with connection on X :

I over each point x ∈ X , it has a vector space Ex

I for each arc connecting x with y , it has a linear map

ptE : Ex → Ey .

This gives naturally a 1-dimensional FFT ZE :

7→ Ex
ptE // Ey



The vector spaces Ex correspond to state spaces with “internal
degrees of freedom”. Since these internal degrees of freedom have
to be fixed (“gauged”) for local considerations, the FFTs ZE

coming from vector bundles with connection are called gauge
theories.

The FFT ZE describes a point-like particle in the spacetime X that
experiences the force of the gauge field E .

The vector bundle is often associated to a principal bundle for a
Lie group G via a representation ρ : G → GL(V ). The standard
model of particle physics includes bundles for three Lie groups:

U(1) , SU(2) and SU(3).



We may compute the value of the FFT ZE on the circle (S1, σ). In
other words, σ : S1 → X is a loop, an element σ ∈ LX in the free
loop space of X .

We split the loop σ into a left and a right semicircle

 σ = γ1 ∪ γ2

σ γ1 γ2

The associated linear map is

C b // E ∗
x ⊗ Ex

ptE (γ1)tr−1⊗ptE (γ2)
// E ∗

y ⊗ Ey
d // C.

It is well known: it is the trace of the holonomy of E around σ.
Non-trivial holonomy expressed an Aharonov-Bohm effect in the
setting of FFTs. This effect has been first predicted for electrons
in 1949 and measured with satisfying tolerance only around 1985.



Problem: The field theory ZE “discretizes” the vector bundle E .

Solution: Instead of a single map σ : Σ → X to spacetime X we
better admit smooth variations

σ : Σ × T → X ,

for arbitrary parameter manifolds T . Doing so on objects and
morphisms, we obtain a symmetric monoidal category

Bordd(X )(T ),

for each T .

For a smooth map f : T → T ′ we obtain a functor

Bordd (X )(T ′) → Bordd(X )(T ).

Topologists call this a presheaf of symmetric monoidal categories
on the category of smooth manifolds.



This is just like in algebraic geometry. Consider a ring R and the
affine scheme Spec(R) represented by R . For each ring T we have
a set

Spec(R)(T ) = Hom(T , R)

and for each homomorphism f : T → T ′ we have a map

Spec(R)(T ′) → Spec(R)(T ).

Affine schemes are presheaves of sets on the category of rings.



Here, we look at a presheaves of symmetric monoidal categories on
the category of manifolds:

Bordd(X ) the presheaf of bordisms over X

VBun the presheaf of vector bundles

Definition (Stolz-Teichner [ST04])

A smooth FFT over X is a morphism

Z : Bordd (X ) → VBun

of presheaves of symmetric monoidal categories.

For each test manifold T , we get a symmetric monoidal functor

Z (T ) : Bordd(X )(T ) → VBun(T ).

What we did before is to only consider T = pt.



We upgrade the vector bundle theory ZE to a smooth FFT:

I Objects of Bord1(X )(T ) are smooth maps φ : T → X .

We assign to φ the pullback φ∗E , which is a vector bundle
over T .

I Morphisms φ0 → φ1 are smooth homotopies

σ : [0, 1] × T → X .

We assign to σ the bundle morphism defined over t ∈ T by

ptE (σ(−, t)) : Eφ(0,t) → Eφ(1,t).

Theorem (Freed [Fre95], Schreiber-KW [SW09], ...)

1-dimensional smooth FFTs are the same as vector bundles with
connection.



Note: the cobordism hypothesis does not hold for smooth FFTs.

Indeed, only the underlying vector bundle E is involved at the level
of objects, not its connection.

We remark that it is not possible to use the presheaf VBun∇ of
vector bundles with connection instead of VBun , as the range of
smooth FFTs. Indeed, the bundle morphism

Z (T )([0, 1], σ) : Z (T )(pt, φ0) → Z (T )(pt, φ1)

is not connection-preserving unless the connection on E is flat.



We try to construct a 2-dimensional smooth FFT

Z : Bord2(X ) → VBun .

I The objects of Bord2(X )(T ) are pairs (Y , φ) with Y = S1

and a smooth map φ : T × S1 → X . We may view this as a
smooth map Φ : T → LX := C∞(S1, X ) into the free loop
space of X . Suppose a vector bundle L over LX is given.
Then, we may put

Z (T )(Y , φ) := Φ∗L.

I The morphisms are of the usual types:

we need a connection on L

we need a fusion product on L



More precisely, a fusion product on a vector bundle L over LX is a
family of bundle isomorphisms

λ : Lγ1∪γ2 ⊗ Lγ2∪γ3 → Lγ1∪γ3

parameterized by triples of paths in X , all connecting the same two
points.

Together with the connection and its parallel transport, we obtain
a well-defined assignment of linear maps to pairs of pants:



The collection of a line bundle L over LX with connection and
fusion product is closely related to a bundle gerbe with connection
over X , and indeed:

Theorem (Bunke-Turner-Willerton [BTW04], KW [Wal16],
KW-Bunk [BW])

The following are the same:

1.) 2-dimensional invertible smooth FFTs over X

2.) Line bundles over LX with connection and fusion product

3.) Bundle gerbes with connection over X



Remarks

I These smooth FFTs extend to the point, with values in a
bicategory of 2-vector bundles

I Bundle gerbes with connection model B-fields in string theory.
The associated smooth FFT encodes the features of strings
moving through the spacetime X in the influence of the
B-field.

I Analogous consideration hold for higher dimensional smooth
FFTs, with the structure over X coming from higher bundle
gerbes with connection.

This has been investigated in 3d for Chern-Simons theory
[Wal13].



For example, the following things correspond under the
equivalences of the last theorem:

1.) The WZW model on a Lie group G at level one.

2.) The universal central extension of the loop group LG .

3.) The basic bundle gerbe G over G .

Most aspects of these relations have been studied in the 80s and
90s by physicists, e.g. Gawȩdzki [Gaw88].



We observe that smooth FFTs over X = pt are the same as
FQFTs. We have classical field theories and quantum field theories
in one framework!

The Stolz-Teichner programs aims at identifying smooth FFTs
with “objects” of a generalized cohomology theory E , such that we
have a bijection

d-sFFT (X ) ∼= E (X )

for all spacetimes X . Using the pushforward map in E , one can
define a quantization map

d-sFFT (X )
Quantization

// d-sFFT (pt) = d-FQFT

E (X )
!

// E (pt)

This is verified for 1d supersymmetric Euclidean FFTs for which E
is K-theory, and the commutativity of above diagram reduces to
the Feynman-Kac formula.



A little summary:

FQFTs: symmetric monoidal functors Z : Bordd → Vect

I 1d: finite-dimensional vector spaces

I 2d: commutative Frobenius algebras

Smooth FFTs over X : presheaf morphisms Z : Bordd (X ) → VBun

I 1d: vector bundles with connection over X

I 2d, invertible: line bundles with connection and fusion product
over LX
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Joint work with Peter Kristel and Matthias Ludewig.

We start in dimension one, and recall the classical treatment of a
(massless) fermion on the circle S1. We require a spin structure
with associated spinor bundle S on S1.

Let σ : S1 → X describe the position of the fermion in spacetime.
We consider the vector bundle Sσ := S⊗ σ∗TX over S1, and the
Hilbert space Hσ := L2(Sσ) of square-integrable sections ψ, which
constitute the fermions. On Hσ acts a twisted Dirac operator

Dσ : Hσ → Hσ.

The action functional for a fermion ψ is

Sσ(ψ) := 〈ψ, Dσψ〉 ,

and the classical equation of motion is the Dirac equation,

Dσψ = 0.



In order to get into the context of smooth FFTs, we want to
perform the fermionic path integral

A(σ) :=

∫

ψ∈L2(S⊗σ∗TX )
e〈ψ,Dψ〉dψ.

A rigorous interpretation and evaluation of this path integral
requires a spin structure on X . Then, A becomes a smooth map

A : LX → C.

It is a square-root of the zeta-regularized determinant of the
covariant derivative; these are results of Atiyah [Ati85], Freed
[Fre86], and Prat-Waldron [PW09].

Can we extend this to a 1-dimensional smooth FFT over X?

Equivalently, is there a vector bundle E with connection over X
such that tr(HolE ) = A ?

Yes, it is the spinor bundle on X , equipped with its natural
connection. This was proved by Prat-Waldron [PW09].



Remarks:

I Note that the extension to a smooth FFT is much simpler to
describe than its value on the circle!

I The family of Dirac operators Dσ defines a Pfaffian line
bundle Pf over LX . Before involving a spin structure on X ,
the fermionic path integral is a section A : LX → Pf ; the
theory has a fermionic anomaly. A spin structure on X
induces a trivialization of Pf , and hence renders A a
complex-valued function.

I We have not mentioned that the spinor bundle is a module for
a bundle of Clifford algebras, and that parallel transport in the
spinor bundle is Clifford-linear. This can be ignored here, but
will be essential in two dimensions.



Finally, we look at dimension two.

Analogously, for Σ a closed surface, the fermionic path integral is a
section in a Pfaffian line bundle over C∞(Σ, X ). This bundle is
trivialized by a (geometric) string structure on X , using results of
Bunke [Bun11]. For the corresponding function

A : C∞(Σ, X ) → C

no alternative description is known.

Can we extend this to a 2-dimensional smooth FFT over X?

We need vector bundle over LX with connection and fusion
product, the spinor bundle on loop space. This bundle has been
attempted to construct in “formal” ways or special cases by Witten
[Wit86], Brylinski [BM92], Taubes, and others. Major progress was
achieved by Stolz and Teichner [ST] using string structures, yet,
their construction remained unfinished.



We sketch the main step in a rigorous construction, obtained in
collaboration with Peter Kristel [KWb] and [KWa].

First we work over a fixed loop, φ : S1 → X . Consider the real
Hilbert space

Hφ := L2(S⊗ φ∗TX ).

Its Clifford algebra Cl(Hφ) acts on the Fock space

FL := ΛL

where L is a Lagrangian subspace of Hφ. Problem: L cannot be
chosen such that it varies continuously over LX : the Fock spaces
FL do not combine into a continuous bundle.



The modelling Hilbert space H0 := L2(S⊗ Cn) has a distinguished
Lagrangian L0, the so-called Atiyah-Patodi-Singer Lagrangian of
“spinors that extend to anti-holomorphic functions on the disk”.

Consider a local frame at φ ∈ LX , inducing an isometric
isomorphism ϕ : Hφ

∼= H0. Then, Lϕ := ϕ−1L0 is a Lagrangian in
Hφ. Another frame ϕ′ is related to ϕ by a transformation
g ∈ LO(n). We need to correct the difference by letting g act on
the Fock space F0 = FL0 .

But LO(n) does not act on F0.

If X is oriented, we may assume g ∈ LSO(n). But LSO(n) does
not act on F0, either.

If X is a spin manifold, we may assume g ∈ LSpin(n). But
LSpin(n) still does not act on F0.



If X is a string manifold, then the frame bundle of LX is lifted
along universal central extension of Pressley-Segal [PS86],

U(1) → ˜LSpin(n) → LSpin(n).

It maps into another central extension studied by Araki [Ara74],

U(1) // Imp(H0) // Ores(H0),

where Imp(H0) is the group of implementers, which acts on F0.

Lemma

If X is a string manifold, this construction yields a smooth bundle
F of Fock spaces over LX .

Similarly, a geometric string structure on X induces a connection
on F .



The group LSpin(n) acts on the Clifford C*-algebra Cl(H0) by
Bogoliubov automorphisms, so that one can define a smooth
bundle Cl of C*-algebras, as soon as X is a spin manifold. This
bundle acts irreducibly on the spinor bundle F .

We prove that there exists a bundle A of C*-algebras over the path
space PX , such that

Clγ1∪γ2
∼= Aγ1 ∪ Aop

γ2

for the completion to bundles of von Neumann algebras.

Lemma

Over a loop γ1 ∪ γ2 ∈ LX , the Fock space Fγ1∪γ2 is a an
irreducible von Neumann Aγ1-Aγ2-bimodule.



Our main result is to define a version of a fusion product on the
spinor bundle F .

Theorem (KW-Kristel [KWa])

The spinor bundle F on loop space is equipped with a fusion
product

Fγ1∪γ2 �Aγ2
Fγ2∪γ3

∼= Fγ1∪γ3 .

Here, �Aγ2
denotes the Connes fusion tensor product of bimodules

over von Neumann algebras.

With this fusion product, we have constructed an
infinite-dimensional vector bundle F over LX with connection and
fusion product.

These are the building blocks for casting the free fermion in
dimension two as a smooth FFT! (The full picture is subject of
going work with Peter Kristel and Matthias Ludewig.)



Some open questions:

I The construction and properties of a Dirac operator on loop
space, acting on sections of F . The construction of this
operator is a long outstanding open problem.

I The relation between spin geometry on loop spaces and
elliptic cohomology, which should be similar to the relation
between ordinary spin geometry and K-theory.

I The development of an index theory on loop space. The
expectation is such this would provide a proof of the Stolz
conjecture about positive Ricci curvature.



A little summary:

FQFTs: symmetric monoidal functors Z : Bordd → Vect

I 1d: finite-dimensional vector spaces

I 2d: commutative Frobenius algebras

Smooth FFTs over X : presheaf morphisms Z : Bordd (X ) → VBun

I 1d: vector bundles with connection over X

I 2d, invertible: line bundles with connection and fusion product
over LX

Examples in spin geometry:

I 1d: the spinor bundle on a spin manifold X

I 2d: the spinor bundle on the loop space LX of a string
manifold
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