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1 Motivation

This talk is about a geometrical realization of the transgression homomorphism

τ : Hk(M) Hk−1(LM).

Comments:

1. For R coefficients, this is pullback along the evaluation map ev : S1 ×LM M

followed by integration along the fibre.

2. Transgression extends to differential cohomology with coefficients in an arbitrary

abelian Lie group A:

τ̂ : Ĥk(M,A) Ĥk−1(LM,A).

For A = U(1), see [Gaw88, Bry93].

There are many situations in which transgression appears. For the purposes of this talk,

consider the case of Z2-coefficients and k = 2:

τ : H2(M, Z2) H1(LM, Z2).

Let ξ ∈ H2(M, Z2) be the 2nd Stiefel-Whitney class of M . Its transgression τ(ξ) ∈

H1(LM, Z2) can be considered as the 1st Stiefel-Whitney class of LM [McL92].



1. If M is orientable, then it is a spin manifold if and only if ξ = 0. In this case,

τ(ξ) = 0, so that LM is “orientable”.

2. If M is simply-connected, then the converse is true: the vanishing of τ(ξ) implies

that M is spin [Ati85].

Questions / Motivation:

1. What is the relation between ξ and τ(ξ) in general? — We need to make τ a

bijection.

2. What is the relation between the “trivializations” of these obstructions, i.e. the

relation between spin structures on M and orientations of LM? — We need to

make τ a functor.

Summarizing, we want to enhance transgression to an equivalence of categories.

2 Transgression as a functor

In order to make transgression a functor , we have to replace the cohomology groups

H2(M) and H1(M) by appropriate categories . There are many variations how to do

this. Here, we choose the following replacements:

H2(M)  Grb∇A(M) :=

{
A-bundle gerbes with

connection over M

}

H1(LM)  Bun∇
A(LM) :=

{
Principal A-bundles over

LM with connection

}

.

Comments:

1. Normally, gerbes are considered as objects in a 2-category. Here we consider the

category obtained from this 2-category by dividing out all 2-isomorphisms.

2. The precise statement relating these categories to cohomology is

Ĥ2(M,A) ∼= h0Grb∇A(M)

Ĥ1(LM,A) ∼= h0Bun∇
A(LM)

where Ĥk(M,A) is the k-th differential cohomology group with values in A, and

h0 denotes the operation of taking isomorphism classes of objects.
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3. The connections are necessary to make transgression a functor, and it is extremely

difficult to get rid of them. For A a discrete group, like Z2, the connections vanish.

It is now possible to define a functor

T : Grb∇A(M) Bun∇
A(LM).

The definition of the principal A-bundle T G over LM that is associated to an A-bundle

gerbe G over M can be described in a very abstract (and thus simple) way:

1. Consider a loop τ ∈ LM . The fibre of T G over τ is the Hom-set Hom(τ∗G, I)

of the category Grb∇A(S1), where I denotes the trivial bundle gerbe. The only

information one needs here is that Hom-sets between A-bundle gerbes are torsors

over the group h0Bun∇
A(S1) ∼= A.

2. Consider an isomorphism A : G H. Then, the morphism T A : T G T H

is obtained by composition:

− ◦ τ∗A−1 : Hom(τ∗G, I) Hom(τ∗H, I).

Comment: Brylinski and McLaughlin have described a procedure to transgress a

“Dixmier-Douady sheaf of groupoids” to a hermitian line bundle with connection over

LM [Bry93]. Up to some reformulation, their procedure is the same as our functor

T . They also show that the functor T reduces – on isomorphism classes – to the

homomorphism τ .

3 The image of transgression: fusion bundles

In order to make the transgression functor an equivalence of categories, it is most impor-

tant to understand its image. That is, we want to characterize those principal A-bundles

over LM that can be obtained from gerbes over M .

Comment: Brylinski and McLaughlin have already identified two additional structures

on the transgressed bundles T G:

1. for loops τ1, τ2 ∈ LM , a product

T Gτ1 ⊗ T Gτ2 T Gτ1?τ2

defined whenever the two loops are smoothly composable, and associative with the

respect to the homotopy associativity of loop composition.
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2. A Diff+(S1)-equivariant structure.

The idea is that the principal A-bundles over LM in the image of transgression are

characterized by such additional structure.

Definition 1. A fusion product on a principal A-bundle P over LM is a bundle mor-

phism that consists fibrewise of maps

λγ1,γ2,γ3 : Pγ−1
2 ?γ1

⊗ Pγ−1
3 ?γ2

Pγ−1
3 ?γ1

associated to triples
•

•

γ1 γ2 γ3

of paths in M . These maps are required to satisfy an associativity constraint for quadru-

ples of paths.

Definition 2. A connection on P is called:

1. compatible with a fusion product λ, if the fusion product is connection-preserving

as a bundle morphism.

2. symmetrizing a fusion product λ, if its parallel transport relates λ(q1 ⊗ q2) with

λ(q2 ⊗ q1) in a certain way.

3. superficial, if its holonomy around loops τ ∈ LLM behaves like a surface holonomy

around the associated tori τ ′ : S1 × S1 M . More precisely, it has to vanish

whenever τ ′ has rank one, and it has to be constant on rank-two-homotopy classes.

Definition 3. A fusion bundle with connection over LM is a principal A-bundle P with

a fusion product λ and with a compatible, symmetrizing and superficial connection.

We denote the category of fusion bundles with connection over LM by FusBun∇
A(LM).

Lemma 4. The transgression functor T lifts to the category of fusion bundles with
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connection, i.e. there is a commutative diagram

Grb∇A(M)
T̃

T

FusBun∇
A(LM)

Bun∇
A(LM)

.

where the functor on the right forgets the fusion product.

Remark 5. Any principal A-bundle P over LM with superficial connection is automat-

ically equivariant under the action of Diff+(S1) on LM .

4 Regression - the inverse of transgression

Theorem 6. The lifted transgression functor

T̃ : Grb∇A(M) FusBun∇
A(LM)

is an equivalence of categories.

The proof – to be found in [WalB] – is carried out by constructing an inverse functor

called regression:

R : FusBun∇
A(LM) Grb∇A(M).

Given a fusion bundle (P, λ) with connection, regression constructs the following bundle

gerbe over M :

1. Its surjective submersion is the path fibration ev1 : PxM M , where x is a base

point in M .

2. The two-fold fibre product comes with a smooth map ` : PxM [2] LM , along

which we pull back P .

3. The fusion product on P is then a bundle gerbe product.

Upgrading this simple construction to a setting with connections is slightly more in-

volved. It comprises the construction of a 2-form “curving” B ∈ Ω2(PxM). The con-

struction is carried out using results developed in joint work with Urs Schreiber [SW].
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5 Spin structures and loop space orientations

Let G be the lifting bundle gerbe associated to the problem of lifting the structure group

of the frame bundle of an oriented Riemannian manifold M from SO(n) to Spin(n). Its

characteristic class is w2 ∈ H2(M, Z2), the second Stiefel-Whitney class of M .

The transgression T G is the orientation bundle over LM . According to the previous

lemma, it is not only a principal Z2-bundle, but it comes with a canonical fusion product.

The usual terminology we have:
{

(Equivalence classes of)

spin structures on M

}

=

{
Trivializations of G, i.e.

gerbe morphisms G I

}

{ Orientations of LM } =

{
Trivializations of T G, i.e.

bundle morphisms T G I

}

In the second row, we have a subset of trivializations that respect the additional fusion

product, fusion-preserving trivializations . These constitute the Hom-set Hom(T̃ G, I).

Now, the theorem tells us:

1. An oriented Riemannian manifold M is spin if and only if LM has a fusion-

preserving orientation.

2. In this case, there is a bijection between equivalence classes of spin structures on

M and fusion-preserving orientations of LM .

These results have also been obtained before by Stolz and Teichner [ST].
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