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Configuration space LM = C∞(S1, M).

“a point in LM is a string in M”

View string theory on M as a theory for point-particles in X = LM.

We know many things about point-particles:

I gauge fields

I spin structures



Look at gauge fields more closely (X = LM).

I Field strength F ∈ Ω2(X )

I Homogeneous Maxwell equations dF = 0.

I Gauge potential A ∈ Ω1(X ), dA = F .

I Coupling term

S(γ, A) =

∫ 1

0
γ∗A

for γ : [0, 1] → X trajectory.



Look at gauge fields more closely (X = LM).

I Field strength F ∈ Ω2(X )

I Homogeneous Maxwell equations dF = 0.

I Gauge potential A ∈ Ω1(X ), dA = F .

I Coupling term

S(γ, A) =

∫ 1

0
γ∗A

for γ : [0, 1] → X trajectory.

Problem: [F ] ∈ H2
dR(X ) may be non-trivial!

“Magnetic monopole”



Solution (Dirac 1931):

I local gauge fields Aα ∈ Ω1(Uα), dAα = F

I gauge transformation on the overlaps:

gαβ : Uα ∩ Uβ → U(1)

such that
Aβ = Aα + dlog(gαβ)

and
gαβ ∙ gβγ = gαγ .



Solution (Dirac 1931):

I local gauge fields Aα ∈ Ω1(Uα), dAα = F

I gauge transformation on the overlaps:

gαβ : Uα ∩ Uβ → U(1)

such that
Aβ = Aα + dlog(gαβ)

and
gαβ ∙ gβγ = gαγ .

I well-defined coupling

n∏

i=1

exp

(

2πi
∫ ti

ti−1

γ∗Aαi

)

gαiαi+1(γ(ti )) ∈ U(1).



In modern terminology of Differential Geometry, the collection

(Aα, gαβ)

represents a

principal U(1)-bundle P with connection over X .

I The field strength F is the curvature of P .

I The coupling term is the parallel transport of P along the
path γ.

It becomes a map between the fibres:

ptγ : Pγ(0) → Pγ(1)



Fact 1 Principal U(1)-bundles P with curvature F exists if and
only if F has integral periods: the class [F ] ∈ H2

dR(X )
is in the image of

H2(X ,Z) → H2(X ,R) = H2
dR(X ).

“charge quantization”

Fact 2 Possible choices of P for fixed curvature F are param-
eterized by H1(X , U(1)).

“Aharonov-Bohm effect”



Summary:

The configuration space perspective suggests that we
should consider a principal U(1)-bundle with connection
over the loop space X = LM.



Problem: a curve in X = LM is just a cylinder in M:

In order to describe string theory, we need to consider more
general shapes, e.g.
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A general string trajectory is a compact surface

φ : Σ → M.

Let us assume first that Σ is oriented and has no boundary.

If B ∈ Ω2(M), then we could define
∫

Σ
φ∗B

as the coupling of the string to the “B-Field” B .

In this context, H := dB ∈ Ω3(M), is called the H-flux.



Important example: the Wess-Zumino-Witten model.

(Wess-Zumino 1971, Witten 1984, Novikov 1981)

Here: M = G is a Lie group, e.g. G = SU(2).

The H-flux is the Cartan 3-form,

H :=
1

6
〈θ ∧ [θ ∧ θ]〉 ∈ Ω3(G ).

In many interesting cases, [H] ∈ H3
dR(G ) is non-trivial: no global

B-field exists.



Copy the Dirac method (Alvarez 1984, Gawedzki 1988):

I local B-fields Bα ∈ Ω2(Uα), dB = H|Uα

I gauge potentials Bβ = Bα + dAαβ

I gauge transformations

Aαγ = Aαβ + Aβγ + dlog(gαβγ)

such that
gαβγ ∙ gαγδ = gαβδ ∙ gβγδ.



Copy the Dirac method (Alvarez 1984, Gawedzki 1988):

I local B-fields Bα ∈ Ω2(Uα), dB = H|Uα

I gauge potentials Bβ = Bα + dAαβ

I gauge transformations

Aαγ = Aαβ + Aβγ + dlog(gαβγ)

such that
gαβγ ∙ gαγδ = gαβδ ∙ gβγδ.

Well-defined coupling: triangulate the surface Σ, with faces f ,
edges e, and vertices v :

∏

f

exp

(

2πi
∫

f
φ∗Bαf

) ∏

e∈∂f

exp

(

2πi
∫

e
φ∗Aαf αe

) ∏

v∈∂e

g ε(f ,e,v)
αf αeαv

(v).



In modern terminology, the data G = (Bα, Aαβ , gαβγ) represents a

bundle gerbe G with connection over M.

(Murray 1995, Murray-Stevenson 2000, Carey et al. 2003)

I The H-flux H is the curvature of G.

I The coupling term is the surface holonomy of G around the
surface φ : Σ → M.

 more in Severin Bunk’s talk!



In modern terminology, the data G = (Bα, Aαβ , gαβγ) represents a

bundle gerbe G with connection over M.

(Murray 1995, Murray-Stevenson 2000, Carey et al. 2003)

I The H-flux H is the curvature of G.

I The coupling term is the surface holonomy of G around the
surface φ : Σ → M.

 more in Severin Bunk’s talk!

Fact 1 A bundle gerbe G with curvature H exists if and only
if H has integral periods.

“Flux quantization”

Fact 2 Possible choices parameterized by H2(G , U(1)).

“Discrete torsion”



Consider the Wess-Zumino-Witten model on a Lie group of
Cartan type (compact + simple + connected + simply connected).

Then, H3(G ,Z) = Z and H2(G , U(1)) = 0.

Moreover, [H] = 1.

Thus, for each “level” k ∈ Z, there is a unique bundle gerbe Gk

over G with connection of curvature kH .



Consider the Wess-Zumino-Witten model on a Lie group of
Cartan type (compact + simple + connected + simply connected).

Then, H3(G ,Z) = Z and H2(G , U(1)) = 0.

Moreover, [H] = 1.

Thus, for each “level” k ∈ Z, there is a unique bundle gerbe Gk

over G with connection of curvature kH .

The basic gerbe G1 has a concrete Lie-theoretical construction
(Meinrenken 2002, Gawȩdzki-Reis 2002)

– Uα conjugation-invariant, α = 0, ...., rk(g)

– Uα ∩ Uβ retracts to a coadjoint orbit Oλα−λβ
⊆ g∗, for λα

vertices of Weyl alcove

– Pαβ is the prequantum bundle with its Kostant connection



A bundle gerbe with connection is a higher structure: they form a
symmetric monoidal bicategory

Grb∇(M).

E.g.,
HomGrb∇(M)(G,G) ∼= Bun∇0

U(1)(M).
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Fact (Stevenson 2000) The assignment

M 7→ Grb∇(M)

is a sheaf of bicategories on the site of smooth manifolds.



A bundle gerbe with connection is a higher structure: they form a
symmetric monoidal bicategory

Grb∇(M).

E.g.,
HomGrb∇(M)(G,G) ∼= Bun∇0

U(1)(M).

Why is this an important observation?

I.e., why not just truncating this bicategory to its homotopy
1-category

h0Grb∇(X ) ?

Fact (Stevenson 2000) The assignment

M 7→ Grb∇(M)

is a sheaf of bicategories on the site of smooth manifolds.

However, M 7→ h0Grb∇(M) is not a sheaf of categories.



This is in fact relevant in Wess-Zumino-Witten models.

If G is a compact simple Lie group, then G = G̃/Z , with

I G̃ of Cartan type

I Z ⊆ Z (G̃ )

In order to construct bundle gerbes with connection over G , we let
them descend from G̃ .



This is in fact relevant in Wess-Zumino-Witten models.

If G is a compact simple Lie group, then G = G̃/Z , with

I G̃ of Cartan type

I Z ⊆ Z (G̃ )

In order to construct bundle gerbes with connection over G , we let
them descend from G̃ .

Gawedzki-Reis classified all Z -equivariant structures on the
bundles gerbes Gk , for all G̃ and all Z .

Example 1: G̃ = SU(2) and Z = Z2. Then, Gk admits
Z -equivariant structures if and only if k is even, and in this case,
there is exactly one. Thus, there is precisely one bundle gerbe over
SO(3) for each even level k .

Example 2: G̃ = Spin(4) and Z = Z2 ×Z2. Again, k must be even
but then Gk admits two different Z -equivariant structures. Thus,
there are two bundle gerbes over PSO(4) for each even level.



Using bundle gerbes and their bicategorical structure, one can get
rid of the assumption that Σ is oriented

“Jandl structure”

(Schreiber-Schweigert-KW 2005, Gawedzki-Suszek-KW 2007)



Using bundle gerbes and their bicategorical structure, one can get
rid of the assumption that Σ is oriented

“Jandl structure”

(Schreiber-Schweigert-KW 2005, Gawedzki-Suszek-KW 2007)

A further aspect that could successfully be treated using bundle
gerbes are open strings, whose end points are constrained to
D-branes.

(Kapustin 2000, Gawedzki-Reis 2002, Gawedzki 2004,
Carey et al. 2005)



Summary:

The B-field perspective suggests to use bundle gerbes
with connections in order to describe gauge fields for
strings. That way, it succeeded to describe the coupling
to strings for all compact surfaces.
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We want to get rid of the assumption that Σ has no boundary.

Fact (Brylinski 1993) Surface holonomy remains well-
defined for surfaces with boundary if a trivialization
of G over ∂Σ is fixed.

Let:

I b1, ..., bn ⊆ ∂Σ label “incoming” boundary components

I c1, ..., cm ⊆ ∂Σ label “outgoing” boundary components

I S1
ϕi∼= bi orientation-reversing diffeomorphisms

I S1
ψi∼= ci orientation-preserving diffeomorphisms



We want to get rid of the assumption that Σ has no boundary.

Fact (Brylinski 1993) Surface holonomy remains well-
defined for surfaces with boundary if a trivialization
of G over ∂Σ is fixed.

Let:

I b1, ..., bn ⊆ ∂Σ label “incoming” boundary components

I c1, ..., cm ⊆ ∂Σ label “outgoing” boundary components

I S1
ϕi∼= bi orientation-reversing diffeomorphisms

I S1
ψi∼= ci orientation-preserving diffeomorphisms

Denote, for a loop τ ∈ LM, by

LGτ := { Trivializations of τ∗G } / 2-isomorphism

Then, surface holonomy is a well-defined map

LGφ◦ϕ1 ⊗ .... ⊗ LGφ◦ϕn → LGφ◦ψ1 ⊗ .... ⊗ LGφ◦ψm



Fact 1 LGτ is a U(1)-torsor:

h0HomGrb∇(S1)(I, I) ∼= h0Bun∇0

U(1)(S
1) ∼= U(1).

Fact 2 LG is a principal U(1)-bundle over LM.

Fact 3 There exists a unique connection on LG whose parallel
transport along a path τt in LM is the surface holo-
nomy map

LGτ0 → LGτ1

Its curvature is

F =

∫

S1

ev∗H



The assignment
G 7→ LG

extends to a functor

h1Grb∇(M) → Bun∇U(1)(LM)

This functor is called transgression – it unifies our two
perspectives to string theory in M.



Connections in the image of transgression are particular.

Fact 1 Surface holonomy for closed Σ is trivial when
φ : Σ → M is thin, i.e., dφx is a rank-one-map.

Thus, thin loops in LM have trivial holonomy.

Equivalently, the parallel transport along a thin path does not
depend on the path.



Connections in the image of transgression are particular.

Fact 1 Surface holonomy for closed Σ is trivial when
φ : Σ → M is thin, i.e., dφx is a rank-one-map.

Thus, thin loops in LM have trivial holonomy.

Equivalently, the parallel transport along a thin path does not
depend on the path.

Fact 2 Surface holonomy is invariant under thin homotopies,
i.e., if φ0, φ1 : Σ → M are homotopic via a homotopy
ht : Σ → M such that h : [0, 1] × Σ → M has rank
two, then φ0 and φ1 have the same surface holonomy.

Thus, rank-two-homotopic loops in LM have equal holonomy.

A connection on a principal U(1)-bundle on LM is called
superficial if it has both properties.



Superficial connections render a principal bundle equivariant for
the action of Diff+(S1) on LM.

Recall that Diff+(S1) is connected: for every element
φ ∈ Diff+(S1) there is a path φt with φ0 = idS1 and φ1 = 1.

Consider a loop τ ∈ LM. Then, τ ◦ φt is a path in LM from τ to
τ ◦ φ. Parallel transport gives a map

LGτ → LGτ◦φ,

lifting the action of Diff+(S1) from LM to LG.

This does not depend on the choice of φt , because τ ◦ φt is thin:

[0, 1] × S1 φ
// S1 τ // M

factors through the 1-dimensional manifold S1.



A bundle gerbe with connection G over M describes string
couplings for all compact oriented surfaces Σ.

The principal U(1)-bundle LG can only describe couplings for
cylinders.

Thus, transgression looses information.

How can this information be recovered?



A bundle gerbe with connection G over M describes string
couplings for all compact oriented surfaces Σ.

The principal U(1)-bundle LG can only describe couplings for
cylinders.

Thus, transgression looses information.

How can this information be recovered?

Idea: a general surface has a pair-of-pants-decomposition, i.e., it
can be chopped up into pairs-of-pants, cylinders, and caps.

We have to take care about the pairs-of-pants.



A pair-of-pants, in turn, consists of three cylinders and some
“product”

 

If two nice paths γ and γ′ have a common initial point and a
common end point, then they form a loop γ ∪ γ′ := γ′ ∗ γ.

The three cylinders end at the loops γ1 ∪ γ2, γ2 ∪ γ3, and γ1 ∪ γ3.



A fusion product on a principal U(1)-bundle P over LM is a
family of bundle morphisms

λγ1,γ2,γ3 : Pγ1∪γ2 ⊗ Pγ2∪γ3 → Pγ1∪γ3

for each triple of paths

satisfying an associativity condition for four paths.
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A fusion product on a principal U(1)-bundle P over LM is a
family of bundle morphisms

λγ1,γ2,γ3 : Pγ1∪γ2 ⊗ Pγ2∪γ3 → Pγ1∪γ3

for each triple of paths

satisfying an associativity condition for four paths.

LG has a fusion product, given by surface holonomy

LGγ1∪γ2 ⊗ LGγ2∪γ3 → LGγ1∪γ3 .

Fact (KW 2010) Transgression is an equivalence of categories:

Grb∇(M) ∼= FusBun∇
sf

U(1)(LM).



Summary:

Transgression establishes an equivalence between the
two perspectives described before, after adding structure
(fusion product) and conditions (superficiality) on the
loop space side.
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We may use transgression in order to recast string theory in the
framework of smooth functorial field theories:

Z : Bordor
2 (M) → VectBdlC

Here:

I Bordor
2 (M) is a sheaf of categories over the site of manifolds.

It assigns to a “test” manifold T the category whose objects
are closed oriented 1-dimensional manifolds S together with a
T -family of smooth maps to M, i.e., φ : T × S → M.

The morphisms are compact oriented 2-dimensional bordisms
Σ together with a T -family of smooth maps to M, modulo
diffeomorphism.

I VectBdlC is the sheaf of complex vector bundles.

I Z is a morphism of symmetric monoidal stacks.



Smooth functorial field theories have been invented by Stolz
and Teichner in order control smooth families of bordisms.

Evaluating at a 1-point manifold T = ∗ reproduces the notion of
an ordinary functorial field theory (or TQFT), where the bordisms
just have a fixed map to M.



Smooth functorial field theories have been invented by Stolz
and Teichner in order control smooth families of bordisms.

Evaluating at a 1-point manifold T = ∗ reproduces the notion of
an ordinary functorial field theory (or TQFT), where the bordisms
just have a fixed map to M.

Smooth functorial field theories can have additional features:

I invertible: take only values in complex line bundles.

I reflection-positive: exchange a flip operation on the bordisms
with complex conjugation of vector spaces.
(Freed-Hopkins 2017)

I superficial: the value on morphisms depends only on the thin
homotopy class of the map to M.



Given a bundle gerbe with connection over M, we want to define a
functorial field theory ZG with

ZG(T )(S1, φ) := (φ∨)∗LG,

where φ∨ ∈ C∞(T , LM) ↔ C∞(T × S1, M) 3 φ.

Fact The surface holonomy of G has all required proper-
ties to make this a well-defined invertible, reflection-
positive, superficial smooth functorial field theory.



Given a bundle gerbe with connection over M, we want to define a
functorial field theory ZG with

ZG(T )(S1, φ) := (φ∨)∗LG,

where φ∨ ∈ C∞(T , LM) ↔ C∞(T × S1, M) 3 φ.

Fact The surface holonomy of G has all required proper-
ties to make this a well-defined invertible, reflection-
positive, superficial smooth functorial field theory.

{
Bundle gerbes with
connection over M

}
oo
Transgression

//

``

Bunke-Turner-Willerton 2004

  BBBBBBBBBBBBB






Fusive principal
U(1)-bundles over
LM with superficial

connections











2-dimensional invertible
reflection-positive superficial

smooth functorial field
theories on M
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Bunk-KW 2018
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Bundle gerbes over Lie groups can be multiplicative:

I 1-morphism
M : pr∗1G ⊗ pr∗2G → m∗G

I 2-isomorphism

G1 ⊗ G2 ⊗ G3
M1,2⊗id

//

id⊗M2,3

��

G12 ⊗ G3

M12,3

��

α mmmmmmmm
mmmmmmmm

rz mmmmmmm
mmmmmmm

G1 ⊗ G23 M1,23

// G123

satisfying a pentagon axiom.

(Carey et al. 2003)



Since transgression is a functor, we obtain a bundle morphism

pr∗1LG ⊗ pr∗2LG → m∗LG

This is the same as a group structure on LG turning it into a
central extension

1 → U(1) → LG → LG → 1.



Since transgression is a functor, we obtain a bundle morphism

pr∗1LG ⊗ pr∗2LG → m∗LG

This is the same as a group structure on LG turning it into a
central extension

1 → U(1) → LG → LG → 1.

Fact Let G be a Lie group of Cartan type. Each bundle
gerbe Gk admits exactly one multiplicative structure.
The transgression of the basic gerbe G1 yields the uni-
versal central extension

1 → U(1) → L̃G → LG → 1.

(Pressley-Segal 1986, KW 2007)



Additionally, we obtain:

I A superficial connection.

Note that a connection on a central extension determines a
splitting of the Lie algebra extension.

I In particular, a Diff+(S1)-equivariant structure.

I A multiplicative fusion product.



Additionally, we obtain:

I A superficial connection.

Note that a connection on a central extension determines a
splitting of the Lie algebra extension.

I In particular, a Diff+(S1)-equivariant structure.

I A multiplicative fusion product.

This additional structure can be used to distinguish “transgressive”
central extensions from arbitrary ones (KW 2016).

For example, every central extension of the loop group of a
compact simple Lie group is transgressive.

LU(1) has non-transgressive central extensions.
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Supersymmetric field theories suffer from a “global anomaly”

I 1-dimensions: anomaly represented by 2nd Stiefel-Whitney
class

w2 ∈ H2(M,Z2)

Cancellation: spin structure on M

I 2-dimensions: anomaly represented by

1

2
p1(M) ∈ H4(M,Z)

Cancellation: again two approaches:

1.) Killingback 1987: spin structure on LM

2.) Stolz-Teichner 2004: string structure on M



Spin structures on loop spaces (Killingback 1987):

I M a spin manifold of dimension n

 frame bundle FM is a Spin(n)-principal bundle

 looped bundle LFM is a LSpin(n)-principal bundle

I Definition: a spin structure on LM is a lift of the structure
group of LFM to the universal central extension

1 → U(1) → ˜LSpin(n) → LSpin(n) → 1

i.e. a principal ˜LSpin(n)-bundle L̃FM over LM with an

equivariant map σ : L̃FM → LFM .



Obstruction against spin structures on loop spaces:

I Spin structures exists if and only if a certain class

λLM ∈ H3(LM,Z)

vanishes.

I Theorem [McLaughlin ’92]:

λLM =

∫

S1

ev∗
(

1

2
p1(M)

)

I Thus, we have

1

2
p1(M) = 0 ⇒ λLM = 0

but the converse is not true in general (Pilch-Warner 1988)

 we need enhanced notion of spin structures on loop spaces



General lifting theory provides a reformulation in terms of
principal S1-bundles and bundle isomorphisms:

I The equivariant map

σ : L̃FM → LFM

exhibits L̃FM as a principal U(1)-bundle over LFM .



General lifting theory provides a reformulation in terms of
principal S1-bundles and bundle isomorphisms:

I The equivariant map

σ : L̃FM → LFM

exhibits L̃FM as a principal U(1)-bundle over LFM .

I The principal ˜LSpin(n)-action on L̃FM can be encoded as an
isomorphism

κ : L̃FM ⊗ ˜LSpin(n) → ρ∗L̃FM ,

of U(1)-bundles over LFM × LSpin(n), with ρ the principal
action of LSpin(n) on LFM .



Enhanced version of a spin structure:

I Definition: A fusive spin structure on LM is a spin structure

L̃FM with a fusion product λ on its U(1)-bundle over LFM
such that

κ : L̃FM ⊗ ˜LSpin(n) → ρ∗L̃FM

is fusion-preserving w.r.t. the fusion product λG1 on
˜LSpin(n) = LG1.



Enhanced version of a spin structure:

I Definition: A fusive spin structure on LM is a spin structure

L̃FM with a fusion product λ on its U(1)-bundle over LFM
such that

κ : L̃FM ⊗ ˜LSpin(n) → ρ∗L̃FM

is fusion-preserving w.r.t. the fusion product λG1 on
˜LSpin(n) = LG1.

I Fact 1 (KW 2012) Fusion spin structures exist if and only if

1

2
p1(M) = 0



Enhanced version of a spin structure:

I Definition: A fusive spin structure on LM is a spin structure

L̃FM with a fusion product λ on its U(1)-bundle over LFM
such that

κ : L̃FM ⊗ ˜LSpin(n) → ρ∗L̃FM

is fusion-preserving w.r.t. the fusion product λG1 on
˜LSpin(n) = LG1.

I Fact 1 (KW 2012) Fusion spin structures exist if and only if

1

2
p1(M) = 0

I Fact 2 (KW 2016) Transgression establishes an equivalence
of bicategories
{

Geometric string
structures on M

}
∼=

{
Superficially geometric

fusive spin structures on LM

}

 more in the talks of Peter Kristel and Matthias Ludewig.



Summary:

I Bundle gerbes with connection are a differential geometric
higher structure on a manifold M.

I Transgression establishes an equivalence to ordinary geometric
structure on the loop space LM, fusive principal bundles with
superficial connections.

I Induced/refined equivalences exist between:

(a) Multiplicative bundle gerbes on G and certain central
extensions of LG .

(b) String structures on M and fusive spin structures on LM.

Thank you very much for your attention!
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