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We characterize parallel transport functors defined by connections in
principal G-bundles among arbitrary functors by a notion which encodes
local triviality and smoothness. In contrast to principal bundles with
connection, parallel transport functors admit a natural categorification.
This yields a new interpretation of (non-abelian) bundle gerbes with
connection and curving as descent data of transport 2-functors.

Plan of the Talk

Principal G-bundles
with connection

Vector bundles
with connection

Transport functors

Categorification

Groupoid bundles
with connection

2-Bundles with
2-connection

Transport 2-functors

Abelian bundle
gerbes with connection

and curving

Non-abelian bundle
gerbes with connection

and curving

...



Ansatz

Let X be a smooth manifold. A principal G-bundle P over X with connection ∇
defines a functor

traP,∇ : P1(X) → G-Tor,

where:

(1) the path groupoid P1(X) of X is defined by

Obj(P1(X)) := X and Mor(P1(X)) := PX/ ∼ ,

PX is the set of smooth maps γ : [0, 1] → X with sitting instants, and ∼ means
smooth thin homotopy equivalence.

(2) G-Tor is the category of smooth G-torsors and equivariant smooth diffeomor-
phisms between those.

Question

We would like to replace principal G-bundles by such functors. For which functors

F : P1(X) → G-Tor

exists a principal G-bundle P over X with connection ∇, such that there is a natural
isomorphism

F ∼= traP,∇ ?

Definition 1

A local trivialization of a functor F : P1(X) → G-Tor is a triple (π, triv, t) of

1.) a surjective submersion π : Y → X

2.) a functor triv : P1(Y ) → ΣG

3.) a natural isomorphism

P1(Y )

triv

π∗ P1(X)

t F

ΣG
i

G-Tor

Any local trivialization defines a natural isomorphism

g := π∗
2t ◦ π∗

1t
−1 : i ◦ π∗

1triv → i ◦ π∗
2triv

which satisfies the cocycle condition

π∗
23g ◦ π∗

12g = π∗
13g.

The pair (triv, g) is called the descent data of the functor F .



Definition 2

A local trivialization (π, triv, t) of a functor F : P1(X) → G-Tor is called smooth, if
the associated descent data (triv, g) is smooth:

1.) The functor triv : P1(Y ) → ΣG is smooth.

2.) The natural isomorphism g : Y [2] → Mor(G-Tor) factors through a smooth map
g̃ : Y [2] → G, i.e. g := i ◦ g̃.

Generalization

The notion of a smooth local trivialization makes sense in more general situations,
namely when

a) F : P1(M) → T is a functor into an arbitrary category T ,

b) Gr is a Lie groupoid, and

c) i : Gr → T is a functor.

Definition 3

A functor
tra : P1(X) → T

is called transport functor with Gr-structure, if it admits a smooth local Gr-
trivialization

P1(Y )

triv

π∗ P1(X)

t tra

Gr
i

T .

Theorem 1

1.) The functor traP,∇ : P1(X) → G-Tor obtained from parallel transport in a prin-
cipal G-bundle P with connection ∇ is a transport functor with ΣG-structure.

2.) The functor

{
Smooth principal G-bundles

over X with connection

}

−→






Transport functors
tra : P1(X) → G-Tor
with ΣG-structure






(P,∇) 7−→ traP,∇

is an equivalence of categories.



Sketch of the proof of Theorem 1

to 1.) Any local trivialization φ : π∗P → G×Y of the principal G-bundle P defines
a smooth local ΣG -trivialization (π, triv, t) of the functor traP,∇: to see this
we prove a bijection

Ω1(Y, g) → Funct∞(P1(Y ), ΣG),

by which we obtain the smooth functor triv : P1(Y ) → ΣG. Then we show
that

t : Y → Mor(G-Tor) , t(y) := φy : Pπ(y) → G

defines a natural isomorphism t : π∗traP,∇ → i◦ triv. For the descent data we
find g = i ◦ g̃, where g̃ : Y [2] → G is the transition function of the principal
G-bundle P with respect to the local trivialization φ, hence smooth.

to 2) Proof of the essential surjectivity: if tra : P1(X) → G-Tor is a transport
functor with ΣG-structure, choose a smooth local trivialization. Its descent
data (triv, g) determines a 1-form A ∈ Ω1(Y, g) and a transition function
g̃ : Y [2] → G. The principal G-bundle with connection reconstructed from
this local data is a preimage of tra.

Examples 1

i) Hermitian vector bundles with unitary connection are obtained (as a monoidal
category) by

T := Vecth(C) and Gr :=
⊔

n∈N

ΣU(n).

ii) Transport functors tra : P1(X) → ΣG restricted to thin homotopy classes of
loops at a point p ∈ X give rise to holonomy maps (Barret ’91, Caetano-Picken
’94)

H : π1
1(M, p) → G.

Categorification

a) We consider transport 2-functors

tra : P2(X) → T

with structure Lie 2-groupoids Gr.

b) Descent data are triples (triv, g, f) consisting of a 2-functor triv : P2(Y ) → Gr
and a pseudonatural isomorphism

g : i ◦ π∗
1triv → i ◦ π∗

2triv

which satisfies the cocycle condition up to a coherent modification

f : π∗
23g ◦ π∗

12g =⇒ π∗
13g.

c) Such descent data (triv, g, f) is called smooth, if triv : P2(Y ) → Gr is a smooth
2-functor, if g factors through a transport 1-functor, and if f factors through a
morphism of transport 1-functors.



Theorem 2

There is a canonical equivalence of 2-categories:






Descent data of
transport 2-functors

tra : P2(X) → ΣVect1
h(C)

with ΣΣU(1)-structure






∼=






Hermitian bundle gerbes
with connection and curving

over X (Murray ’94)






Sketch of the proof of Theorem 2:

Let π : Y → M be a surjective submersion, and (triv, g, f) descent data. Then,

a) the smooth functor triv : P2(Y ) → ΣΣU(1) defines a 2-form C ∈ Ω2(Y ),

b) the pseudonatural isomorphism g : P1(Y
[2]) → Vect1

h(C) defines a hermitian
line bundle L over Y [2] with connection ∇ of curvature π∗

2C − π∗
1C, and

c) the modification f : π∗
23g ◦ π∗

12g → π∗
13g defines an associative isomorphism

μ : π∗
12L ⊗ π∗

23L → π∗
13L of line bundles over Y [3].

This gives a hermitian bundle gerbe (π, L, μ) with connection ∇ and curving C.

Examples 2

i) (Non-abelian) H-bundle gerbes with connection and curving (Aschieri-Jurco-
Cantini ’05) are obtained as descent data of transport 2-functors

tra : P2(X) → ΣBiTor(H)

with ΣAUT(H)-structure, where

a) BiTor(H) is the category of H-bi-torsors.
b) AUT(H) is the Lie 2-group corresponding to the crossed module

H
ad Aut(H) id Aut(H) .

ii) Non-abelian (fake-flat) differential cocycles (Breen-Messing ’01) for a Lie 2-
group G2 are obtained as descent data of transport functors

tra : P2(X) → ΣG2

with ΣG2-structure.


