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Introduction

Klassische Eichtheorien punktförmiger Teilchen – wie zum Beispiel die Theorie der
Elektrodynamik – kann man als Theorie von Vektorbündeln mit Zusammenhang
verstehen. Dabei entspricht die Feldstärke des Eichfeldes der Krümmung des Zu-
sammenhangs, und die Wirkung eines Teilchens, das sich durch das Eichfeld bewegt,
wirdzu einem Teil durch Paralleltransport entlang seiner Weltlinie bestimmt.

Man unterscheidet zwei Arten von Weltlinien, geschlossene und solche mit En-
den. Der Paralleltransport um eine geschlossene Weltlinie läßt sich als Holonomie
des Zusammenhangs ausdrücken; diese nimmt Werte in der Strukturgruppe des Vek-
torbündels an. In dieser Arbeit wird das immer U(1) sein. Im Fall einer Weltlinie
mit Enden werden an den Endpunkten Trivialisierungen des Vektorbündels gewählt,
so dass der Paralleltransport um solche Kurven ebenfalls Werte in dieser Gruppe
annimmt. Ich werde deshalb vereinheitlichend in beiden Fällen nur noch von Holo-
nomie sprechen.

Ebenso wichtig wie Vektorbündel mit Zusammenhang selbst sind Morphismen von
Vektorbündeln mit Zusammenhang: sie bringen Eichtheorien, die durch verschiedene
Vektorbündel mit Zusammenhang definiert werden, in Verbindung und ermöglichen
eine Klassifizierung von Eichtheorien. Es ist demnach natürlich, Vektorbündel mit
Zusammenhang als Kategorie zu behandeln.

Während die gerade erwähnten, punktförmigen (null-dimensionalen) Teilchen ein-
dimensionale Weltlinien besitzen, beschäftigt man sich in der Stringtheorie mit ein-
dimensionalen physikalischen Objekten, die zweidimensionale Weltflächen überstrei-
chen. Man erwartet, dass sich eine Eichtheorie für solche Teilchen in gewissem Sinne
analog zu der oben skizzierten Eichtheorie für punktförmige Teilchen verhält. Zu
ihrer Beschreibung wird also zunächst ein Objekt benötigt, welches die Berechnung
von Holonomie entlang einer zweidimensionalen Fläche erlaubt, und somit die Rolle
des Vektorbündels mit Zusammenhang in der Stringtheorie übernimmt. Ein derar-
tiges Objekt wird allgemein als Gerbe mit Zusammenhang bezeichnet.

Für den Begriff Gerbe existieren in der Literatur verschiedene, teilweise nicht-
äquivalente Definitionen [Bry93, Mur96, Hit01, Moe02], von denen aber nur einige
geeignet zu sein scheinen, zur Definition einer Gerbe mit Zusammenhang ausgedehnt
zu werden. Eine davon ist Gegenstand dieser Arbeit: die Bündelgerbe. Da ich vor
allem an ihrer Holonomie interessiert bin, werde ich in dieser Arbeit von vorneherein
nur Bündelgerben mit Zusammenhang behandeln, und diese von nun an verkürzt
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als Bündelgerben bezeichnen.
Zunächst wurden Bündelgerben als alleinstehende Objekte eingeführt [Mur96].

Um sie zu klassifizieren, wurden später Morphismen von Bündelgerben definiert
[MS00], sogenannte stabile Isomorphismen. Durch sie wird eine Äquivalenzrelation
auf der Menge der Bündelgerben definiert, deren Äquivalenzklassen in Bijektion zur
Deligne-Kohomologiegruppe H2(M,D2) stehen. Im Umgang mit stabilen Isomorphis-
men stellt es sich jedoch heraus [Ste00, SSW05], dass man hier – im Gegensatz zu
Morphismen in einer Kategorie – zum Vergleich zweier stabiler Isomorphismen einen
Begriff von Morphismen von stabilen Isomorphismen benötigte. Damit ist klar, dass
Bündelgerben keine Kategorie bilden können. Vielmehr wird in [Ste00] gezeigt, dass
Bündelgerben zusammen mit stabilen Isomorphismen und Morphismen von stabilen
Isomorphismen – sogenannten Transformationen – ein 2-Groupoid1 bilden.

Der Nutzen von Bündelgerben in der Stringtheorie und in der Lagrange’schen For-
mulierung von zweidimensionaler konformer Feldtheorie ist erwiesen [GR02, Gaw05,
SSW05], wird aber hier nur eine untergeordnete Rolle spielen. Man kann diesen An-
wendungen aber die Motivation für die Untersuchung zweier Begriffe entnehmen:
der einer Trivialisierung und der eines Gerbenmoduls einer Bündelgerbe. Um näm-
lich die Holonomie einer Bündelgerbe entlang einer Weltfläche zu berechnen, sind
zunächst – analog zur Unterscheidung zwischen geschlossenen Weltlinien und sol-
chen mit Enden bei punktförmigen Teilchen – geschlossene Weltflächen und solche
mit Rand zu unterscheiden. Im Fall einer Weltfläche mit Rand werden durch einen
Gerbenmodul Randbedingungen gestellt. Dann wird in beiden Fällen die Holonomie
durch die Wahl einer Trivialisierung berechnet.

In dieser Arbeit schlage ich eine Definition für eine neue Art von Morphismen
zwischen Bündelgerben vor, die ich stabile Morphismen2 nenne (Definition 1.3a).
Entsprechend definiere ich Morphismen zwischen stabilen Morphismen (Definition
1.5a). Eine gewisse Klasse der stabilen Morphismen definiere ich als stabile Isomor-
phismen (Definition 1.3b). Als Eigenschaften dieser Definitionen möchte ich drei
Erkenntnisse darlegen.

Erstens ergibt sich, dass die Äquivalenzrelation, die durch die hier definierten
stabilen Isomorphismen auf der Menge der Bündelgerben definiert wird, mit der
oben erwähnten Äquivalenzrelation aus [MS00] übereinstimmt; der Isomorphiebegriff
von Bündelgerben bleibt also unberührt. Ich liefere den Beweis dieser Aussage im
Appendix (Theorem A.1).

Zweitens umfasst die hier gegebene Definition von stabilen Morphismen verein-
heitlichend Trivialisierungen und Gerbenmoduln: eine Trivialisierung einer Bündel-
gerbe G ist demnach ein stabiler Isomorphismus von G in eine bestimmte Art trivialer
Bündelgerbe, und ein Gerbemodul ist ein stabiler Morphismus von G in eine solche
triviale Bündelgerbe. Diese Aussagen sind, zusammen mit den grundlegenden Defi-
nitionen einer Bündelgerbe, eines stabilen Morphismus, und eines Morphismus von
stabilen Morphismen, Gegenstand von Kapitel 1 dieser Arbeit.

Als drittes Resultat zeige ich in Kapitel 2, dass Bündelgerben zusammen mit den
hier definierten stabilen Morphismen und Morphismen von stabilen Morphismen ei-

1In [Ste00] wird zwar von einem Bigroupoid gesprochen, dessen Definition stimmt jedoch mit
der hier gegebenen Definition einer 2-Kategorie (mit zusätzlichen Eigenschaften) überein.

2Dieses Wort wird zwar auch in [Ste00] verwendet, aber in einem anderen Sinn.
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ne 2-Kategorie BGrb(M) bilden. Dazu stelle ich ausführlich die Struktur zusammen,
und überprüfe die Axiome. Es stellt sich heraus, dass die so definierte 2-Kategorie
der Bündelgerben ist nicht strikt ist (Remark 2.4a). Weiter ergibt sich, dass die
stabilen Isomorphismen genau die invertierbaren 1-Morphismen von BGrb(M) sind
(Theorem 2.5a), so dass im Nachhinein der Begriff stabiler Isomorphismus gerecht-
fertigt wird.

Die Definition der 2-Kategorie BGrb(M) der Bündelgerben über M erlaubt einen
präzisen Umgang mit Bündelgerben und ihren Morphismen: im letzten Abschnitt
dieser Arbeit gebe ich an, wie die Wohldefiniertheit der Definitionen von Holonomie
von Bündelgerben und Holonomie von Bündelgerben mit Gerbenmoduln – so wie
sie in [CJM02] gegeben wurden – in direkter Weise aus den Eigenschaften der 2-
Kategorie BGrb(M) folgt, und nicht aufwändig bewiesen werden muss.

Mit der Definition von BGrb(M) wird unmittelbar deutlich, dass die Eichtrans-
formationen einer Bündelgerbe G – das sind alle stabilen Morphismen von G nach
G – eine Kategorie bilden: das ist nämlich in jeder 2-Kategorie der Fall. Sie bietet
außerdem die Möglichkeit, den vermuteten Zusammenhang von Bündelgerben mit
einer gewissen noch zu spezifizierenden Klasse von 2-Bündeln präzise als Äquivalenz
von 2-Kategorien zu formulieren.

Ich bedanke mich sehr herzlich bei meinen Gutachtern, Christoph Schweigert und
Birgit Richter. Außerdem bei Urs Schreiber, der meine Aufmerksamkeit auf die 2-
kategoriellen Aspekte der Theorie von Bündelgerben gelenkt hat, und mit dem ich
unzählige Diskussionen zu diesem Thema führen durfte. Letztendlich wäre diese
Arbeit aber ohne die Fachbereichsverwaltung des Departments Mathematik nicht
zustande gekommen; ebenfalls nicht ohne die wohlwollende Unterstützung durch
den Studiendekan, Herrn Professor Bodo Werner.





1 Bundle Gerbes

The first section 1.1 introduces the language of categories and descent theory,
which will be used throughout this thesis. After the well-known definition of a bundle
gerbe in section 1.2, I present my definition of stable morphisms and stable isomor-
phisms of bundle gerbes in section 1.3, together with their law of composition. In
section 1.4 I show that it contains trivializations and bundle gerbe modules of a
bundle gerbe as special cases. The last section provides the definition of morphisms
of stable morphisms.

1.1 The monoidal Stack of Vector Bundles

The theory of bundle gerbes is build on the theory of (complex) vector bundles over
smooth manifolds and their descent theory. In many situations the following question
arises: when A is a vector bundle over a smooth manifold Y , and π : Y → M is a
smooth map, is there another vector bundle B over M , such that π∗B and A are
isomorphic vector bundles?

Because the same question also arises for morphisms of vector bundles, it is natural
to discuss it in a categorial framework. The discussion leads to the definition of the
stack of vector bundles.

Just to be complete, I start with the definition of a (small) category.

Definition 1.1a. A category C consists of the following data:

• a set of objects Obj(C),

• for each two objects A,A′ a set of morphisms HomC(A,A′),

• for each object A an identity morphism idA ∈ HomC(A,A) and

• for each three objects A,A′,A′′ a map

◦ : HomC(A
′,A′′) × HomC(A,A′) −→ HomC(A,A′′), (1)

such that the following two axioms are satisfied:

(C1) Identity: for each morphism β ∈ HomC(A,A′) the identity axiom

idA′ ◦ β = β = β ◦ idA. (2)
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(C2) Associativity: for all morphisms β ∈ HomC(A1,A2) , β′ ∈ HomC(A2,A3) and
β′′ ∈ HomC(A3,A4) the associativity axiom

(β′′ ◦ β′) ◦ β = β′′ ◦ (β′ ◦ β). (3)

If C and D are two categories, one can form the product category C × D with
objects Obj(C) × Obj(D), morphisms HomC×D((X,Y ), (X ′, Y ′)) = HomC(X,X ′) ×
HomD(Y, Y ′) and the composition is also the direct product of the composition maps
from C and D. A trivial example of a category is the category 1 consisting of only
one object • and with Hom(•, •) = {id•}. For this category, I canonically identify
the direct products 1 × C and C × 1 for any category C with C itself for simplicity.

An invertible morphism β ∈ HomC(A,A′) is called isomorphism, and the category
C is called a groupoid, if every morphism is an isomorphism. Recall further that

• a functor F : C → D consists of maps F : Obj(C) → Obj(D) and F :
HomC(X,Y ) → HomD(F (X), F (Y )) respecting the composition of morphisms
and the identity morphism. For each category C there is the functor idC consisting
of identity maps.

• a natural transformation η : F ⇒ F ′ of two functors F, F ′ : C → D is for each
object X ∈ Obj(C) a morphism ηX ∈ HomC(F (X), F ′(X)), such that for every
morphism f ∈ HomC(X,Y ) the diagram

F (X)

F (f)

ηX
F ′(Y )

F ′(f)

F (Y ) ηY
F ′(Y )

(4)

commutes. For each functor F there is the identity natural transformation id :
F ⇒ F . A natural transformation is called natural equivalence, if the morphism
ηX is an isomorphism for each object X.

• a functor F : C → D is called an equivalence of categories, if there is a functor
F ∗ : D → C and two natural equivalences

l : F ◦ F ∗ =⇒ idD (5)

r : F ∗ ◦ F =⇒ idC. (6)

As a first example of a category, let Bun(M) be the category of vector bundles
over a smooth manifold M , together with morphisms of vector bundles, and the
usual composition of morphisms of vector bundles. Throughout this thesis, by vec-
tor bundle I mean a smooth hermitian complex vector bundle of finite rank with
connection, and all morphisms of vector bundles are meant to be smooth and to
preserve the hermitian metric and the connection. The preservation of the hermiti-
an metric implies that every morphism is an isomorphism, hence Bun(M) is even a
groupoid.

Definition 1.1b. A monoidal category is a category C together with the follo-
wing additional structure:
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• a functor ⊗ : C × C → C together with a natural equivalence3

C × C × C
idC×⊗

⊗×idC

C × C

α ⊗

C × C ⊗ C

. (7)

• a functor 1 : 1 → C, together with natural equivalences

C

idC

1×idC
C × C

λ
⊗

C

and

C

idC

idC×1
C × C

%
⊗

C

. (8)

The three natural equivalences have to satisfy the following two coherence axioms:

(MC1)The Pentagon identity4:

C × C × C × C

idC×⊗×idC

idC×idC×⊗

C × C × C

idC×⊗C × C × C

idC×⊗

⊗×idC C × C
α

⊗C × C

⊗
C

id×α

=

C × C
×C × C

⊗×idC×idC

idC×⊗×idC

idC×idC×⊗

C × C × C

id

⊗×idC

idC×⊗

C × C × C

α×id

⊗×idC

idC×⊗

C × C

α

⊗C × C × C

⊗×idC

C × C

α ⊗

C × C ⊗ C

3Diagrams of this type are used to express, that α is a natural equivalence from the functor
⊗ ◦ (idC ×⊗) to the functor ⊗ ◦ (⊗× idC) – which are both functors from C × C × C to C– with a
view to avoid the composition symbol ◦.

4Equations of two diagrams like the next one are equations of natural equivalences: parsing the
boundary arrows clockwise, one obtains from both diagrams the same functor, here ⊗◦ (idC ×⊗) ◦
(idC × idC × ⊗). By parsing counter-clockwise, one obtains another functor, here ⊗ ◦ (⊗ × idC) ◦
(idC ×⊗× idC). These two functors are both functors from C× C× C× C to C, and each diagram
is a natural transformation between the clockwise parsed functor and the counter-clockwise one.
Now the equation states that the two natural transformations are equal.
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(MC2)The triangle identity:

C × C

⊗

idC×1×idC
C × C × C

id×λ
idC×⊗

C × C

⊗

C

=

C × C

idC×idC

idC×1×idC
C × C × C

⊗×idC

idC×⊗

C × C
α

⊗

C × C ⊗ C

%×idC

According to the definitions of functors and natural transformations there are ob-
vious definitions of monoidal functors and monoidal natural transformations, which
can be found in the literature [ML97].

Recall that I presented the groupoid Bun(M) of vector bundles over a smooth
manifold M as an example of a category. Now I endow this groupoid with the
structure of a monoidal category. I denote the trivial vector bundle M×C (equipped
with the trivial flat connection) by 1. To make the groupoid Bun(M) together with
the trivial vector bundle 1 and the usual tensor product of vector bundles into a
monoidal category, I just have to note that the natural equivalences α, λ are given
by the canonical isomorphisms

αA,B,C : A ⊗ (B ⊗ C) −→ (A ⊗ B) ⊗ C (9)

λA : 1 ⊗ A −→ A (10)

%A : A ⊗ 1 −→ A (11)

of vector bundles over M . As known from the theory of vector bundles, these iso-
morphisms are coherent in the sense of the axioms (MC1) and (MC2) of a monoidal
category. In this thesis I will often abbreviate these canonical isomorphisms by “∼=”,
to simplify equations and diagrams, and only sometimes use α, λA and %A to em-
phasize their presence.

In the following, two additional structures on monoidal categories are important.

• Let ex : C × C → C × C be the functor which exchanges the two components of a
direct product. A symmetry on a monoidal category (C, 1,⊗, α, λ, %) is a natural
equivalence

C × C
ex

⊗

C × C

⊗
γ

C

(12)

such that
C × C

⊗

ex
C × C

⊗

ex
C × C

γ
γ

⊗

C
idC

C

= id⊗,
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and which is compatible with α,

C × C × C

idC×ex

idC×⊗

⊗×idC
C × C

⊗

C × C × C

⊗×idC

idC×⊗

C × C

⊗

C × C ⊗ C

α−1

id×γ

α

=

C × C × C

idC×ex ⊗×idC

C × C × C

ex×idC

⊗×idC

C × C × C

⊗×idC

idC×⊗

C × C

α ⊗

C × C ⊗ C

γ−1×id

γ

and with λ and %:

C

idC

idC×1
C × C

%
⊗

C

=

C

idC

idC×1
C × C

⊗

γ

ex

C × C
λ

⊗

C
idC

C

A monoidal category with a symmetry is called symmetric monoidal category.

• Suppose there is a monoidal category C(M) for each smooth manifold M . A
pullback structure on C(M) is a functor

f ∗ : C(M) −→ C(N) (13)

for each smooth map f : N → M together with a natural equivalence

πg,f : (f ◦ g)∗ =⇒ g∗ ◦ f ∗, (14)

for each two composable maps f : N → M and g : O → N which is coherent for
threefold compositions

P
h

O
g

N
f

M (15)

of smooth maps, which means that

C(M)

(f◦g)∗

πg,f

f∗

(f◦g◦h)∗

πh,f◦g

C(P )

C(N)
g∗

C(O)

h∗ =

C(M)

f∗

(f◦g◦h)∗

C(P )

C(N)

(g◦h)∗

πg,h

g∗
C(O)

h∗

πf,g◦h

(16)

as natural transformations from (f ◦g ◦h)∗ to h∗ ◦g∗ ◦f ∗, and which is compatible
with the monoidal structures (I don’t write out the diagrams here).
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The groupoid Bun(M) comes naturally with a symmetry and a pullback structure:
the symmetry is given by the canonical isomorphisms

γA,B : A ⊗ B −→ B ⊗ A (17)

for each two vector bundles A and B. To define its pullback structure, recall [Bar04],
that the pullback of a vector bundle A via a smooth map f : N → M is unique-
ly defined up to canonical isomorphisms of vector bundles. This gives a functor
f ∗ : Bun(M) → Bun(N), sending the bundle A over M to the fibre product
f ∗A := N ×M A, and an isomorphism ϕ : A → B of vector bundles over M to
the isomorphism f ∗ϕ := 1 × ϕ of vector bundles over N . Note that the pullback is
compatible with the composition of smooth maps f : N → M and g : O → N in
the sense that there are canonical natural equivalences

(πg,f )A : (f ◦ g)∗A =⇒ g∗f ∗A, (18)

which are coherent when concerned with a threefold composition, and compatible
with the other structure of Bun(M).

Now let π : Y → M be a surjective submersion. Whenever I am concerned with
a surjective submersion, by Y [k] I denote the k-fold fibre product of Y with itself,
which is again a smooth manifold. I denote the canonical projections from Y [k] to Y [l]

with l < k by πi1...il , where the indices indicate those components of Y [k] on which
is projected. Note that whenever f : Y1 → Y2 is a fibre-preserving map between
surjective submersions, there are canonically induced maps f : Y

[k]
1 → Y

[k]
2 on the

k-fold fibre products, which I denote by the same letter for simplicity.
A morphism of surjective submersions π : Y → M and π′ : Y ′ → M is a surjective

submersion p : Y → Y ′ such that π = π′ ◦ p. Here I want to think of a surjective
submersion π : Y → M as a generalization of an open cover of M . Recall [Bar04],
that open covers are in bijection to surjective local diffeomorphisms π : Y → M ,
where for an open cover {Uα}α∈A one sets

Y :=
⊔

α∈A

Uα, (19)

and π is the inclusion π : Uα ↪→ M . To develop the theory of bundle gerbes, local
diffeomorphism is generalized to submersion. This generalization is important for
the construction of concrete examples of bundle gerbes [Mei02, GR03] (cf. section
1.2).

Corresponding to the generalization of open covers to surjective submersions, I
introduce a generalization of a stack over a smooth manifold defined on open covers
[Moe02], to the definition of a stack over a smooth manifold defined on surjective
submersions.

Definition 1.1c. A fibred category F over M consists of

• a category F(Y ) for each surjective submersion π : Y → M .

• a functor F(p) : F(Y2) → F(Y1) for each morphism p : Y1 → Y2 of surjective
submersions.
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• a natural equivalence

F(p, p′) : F(p′ ◦ p) =⇒ F(p) ◦ F(p′) (20)

for each pair p : Y1 → Y2, p′ : Y2 → Y3 of composable morphisms of surjective
submersions, such that for three composable morphisms of surjective submersions
p, p′ and p′′ : Y3 → Y4 the equality

F(Y4)

F(p′′◦p′)

F(p′,p′′)

F(p′′)

F(p′′◦p′◦p)

F(p,p′′◦p′)

F(Y1)

F(Y3) F(p′)
F(Y2)

F(p) =

F(Y4)

F(p′′)

F(p′′◦p′◦p)

F(p′◦p,p′′)

F(Y1)

F(Y3)

F(p′◦p)

F(p,p′)

F(p′)
F(Y2)

F(p) (21)

of natural transformations holds.

To formulate the gluing axiom, define a category Des(F , p) of descent data for a
given fibred category F and any morphism p : Y → Y ′ of surjective submersions as
follows:

• its objects are pairs (A,α) where A is an object of the category F(Y ) and α :
F(p1)(A) → F(p2)(A) is a morphism in the category F(Y [2]) such that

F(p11)(α) = idF(p1)(A) (22)

F(p13)(α) = F(p23)(α) ◦ F(p12)(α) (23)

as morphisms in the category F(Y [3]).

• a morphism β : (A,α) ⇒ (A′, α′) is a morphism β : A → A′ in the category F(Y )
such that the diagram

F(p1)(A)

α

F(p1)(β)
F(p1)(A

′)

α′

F(p2)(A)
F(p2)(β)

F(p2)(A
′)

(24)

of morphisms in the category F(Y [2]) commutes.

• the composition of morphisms is just the composition of morphisms in F(Y ).

Note that the pullback along p defines a canonical functor Dp : F(Y ′) →
Des(F , p). The following definition of a stack is analogous to the definition of a
stack defined on open covers [Moe02].

Definition 1.1d. The fibred category F is called a stack, provided Dp is an
equivalence of categories for each morphism p.
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Now I want to give a concrete example of a stack, namely the stack of vector
bundles over a given smooth manifold M . So I define a fibred category B over M
as follows. For a surjective submersion π : Y → M let B(Y ) := Bun(Y ). For
a morphism of surjective submersions p : Y1 → Y2 let B(p) := p∗. The natural
equivalences B(p, p′) : (p′ ◦ p)∗ → p∗ ◦ p′∗ are given by the natural equivalence
πp,p′ for pullbacks of vector bundles. The coherence of these natural equivalences
shows that B is a fibred category. I already mentioned that the categories Bun(Y )
are groupoids. For such “fibred groupoids” equation (22) follows from (23) by the
existence of inverses.

Theorem 1.1e. The fibred category B is a stack.

Proof . Consider the descent category Des(B, p) for a morphism p : Y → Y ′ of
surjective submersions. By definition, an object (A,α) is a vector bundle A → Y
together with an isomorphism

α : π∗
1A −→ π∗

2A (25)

of vector bundles over Y [2], which satisfies the cocycle condition

π∗
13α = π∗

23α ◦ π∗
12α (26)

over Y [3]. A morphism in Des(B, p) is a morphism

β : A −→ A′ (27)

of vector bundles over Y , which is compatible with α and α′ in the sense that the
diagram

π∗
1A

α

π∗
1β

π∗
2A

π∗
2β

π∗
1A

′
α′

π∗
2A

′

(28)

of morphisms of vector bundles over Y [2] commutes. The canonical functor Dp is the
functor p∗ : Bun(Y ′) → Des(B, p), which maps a vector bundle L → Y ′ to (p∗L, id),
and a morphism β : L1 → L2 of vector bundles over Y ′ to p∗β.

The category Des(B, p) consists exactly of those vector bundles, which satisfy
the well-known descent condition for bundles [Bry93]. This defines a functor D∗

p :
Des(B, p) → Bun(Y ′), such that D∗

p ◦ Dp and Dp ◦ D∗
p are naturally equivalent to

the respective identity functors. The functor D∗
p can be written down explicitly, but

I don’t need the construction in the rest of this thesis.

The definition of a fibred category extends naturally to the definition of a fibred
symmetric monoidal category. This way it is clear that the stack B is a symmetric
monoidal stack.
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1.2 Bundle Gerbes

By line bundle I mean a vector bundle of rank 1; according to my conventions this
is a hermitian complex vector bundle of rank 1 with connection. Line bundles over
M form a full subcategory Lin(M) of Bun(M). In the same way I defined the stack
B of vector bundles, there is the symmetric monoidal stack LB of line bundles.

Definition 1.2a. A bundle gerbe G over a smooth manifold M consists of the
following data:

• a surjective submersion π : Y → M which is called the covering of G,

• a line bundle L → Y [2],

• a 2-form C ∈ Ω2(Y ), which is called the curving of G, and

• an isomorphism
μ : π∗

12L ⊗ π∗
23L −→ π∗

13L (29)

of line bundles over Y [3]

such that the following two axioms are satisfied:

(G1) the curvature of L is compatible with the curving C, i.e.

curv(L) = π∗
2C − π∗

1C (30)

(G2) μ is associative in the sense that the diagram

π∗
123(π

∗
12L ⊗ π∗

23L) ⊗ π∗
34L

π∗
123μ⊗1

∼=

π∗
123π

∗
13L ⊗ π∗

34L
∼=

π∗
12L ⊗ π∗

234(π
∗
12L ⊗ π∗

23L)

1⊗π∗
234μ

π∗
134(π

∗
12L ⊗ π∗

23L)

π∗
134μ

π∗
12L ⊗ π∗

234π
∗
13L

∼=

π∗
134π

∗
13L
∼=

π∗
124(π

∗
12L ⊗ π∗

23L)
π∗
124μ

π∗
124π

∗
13L

(31)

of isomorphisms of line bundles over Y [4] commutes.

In the diagram, by ∼= I indicate for simplification the usage of the canonical natural
equivalences α, γ and π of the symmetric monoidal category Lin(Y [4]).

To every bundle gerbe G over M one assigns a 3-form curv(G) ∈ Ω3(M), which is
called the curvature of the bundle gerbe. To this end, observe that from axiom (G1)
it follows that π∗

1dC = π∗
2dC, since the curvature of a line bundle is a closed form.

Hence, there is a unique 3-form H ∈ Ω3(M) with the property π∗H = dC. Define
this 3-form to be the curvature curv(G) := H of the bundle gerbe G.

To give at least one concrete example of a bundle gerbe, I construct to a given
2-form % ∈ Ω2(M) on a smooth manifold M a bundle gerbe I%, which I call the
canonical bundle gerbe with B-field %. To this end, let the covering be Y := M
with π := idM , so that Y [2] ∼= M . Let the line bundle L be the trivial line bundle,
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and the isomorphism μ be the identity. The curving is C := % ∈ Ω2(Y ). Now the
axiom (G1) for gerbe data is satisfied, since curv(L) = 0 and π1 = π2 = idM . The
associativity axiom (G2) is trivially satisfied, so I have defined a bundle gerbe I%.
For the curvature of this bundle gerbe one finds curv(I%) = d%.

Other examples of bundle gerbes are constructed in [GR02, Mei02, GR03]. Especi-
ally the construction of bundle gerbes over simply-connected Lie groups G different
from SU(N) or Sp(4n) shows, that the generalization of open covers to surjective
submersions mentioned in section 1.1 is essential: here Y is not the disjoint union
of the sets of an open cover of G. Constructions for other manifestations of gerbes
with connection – such as Deligne cocycles or Hitchin gerbes [Hit01] – for such Lie
groups are not known.

For a bundle gerbe G, a consequence of the existence of the isomorphism μ is that
the line bundle L restricted to the image of the diagonal map Δ11 : Y → Y 2 is
trivial. Furthermore, I construct an isomorphism tμ : Δ∗

11L → 1 of line bundles over
Y via the pullback of the isomorphism μ along the diagonal map Δ111 : Y → Y [3],

Δ∗
11L

∼= (Δ∗
11L ⊗ Δ∗

11L) ⊗ Δ∗
11L

∗ Δ∗
111μ⊗1

Δ∗
11L ⊗ Δ∗

11L
∗ ∼= 1. (32)

Here ∼= again indicates the canonical natural equivalences of Lin(Y ). I denote the
degeneracy maps of Y [k] by Δi1,...,ik : Y [l] → Y [k], so that Δ11 and Δ111 reproduce
the above diagonal maps. The isomorphism tμ is characterized by the following

Proposition 1.2b. The isomorphism tμ : Δ∗
11L → 1 has the properties

%L ◦ (1 ⊗ π∗
2tμ) = Δ∗

122μ and λL ◦ (π∗
1tμ ⊗ 1) = Δ∗

112μ, (33)

where %L and λL are the natural equivalences of the monoidal category Bun(Y [2]).

Proof . This is a direct consequence of the associativity axiom (G2) for the iso-
morphism μ, which gives the equations

1 ⊗ π∗
2Δ

∗
111μ = Δ∗

122μ ⊗ 1 and π∗
1Δ

∗
111μ ⊗ 1 = 1 ⊗ Δ∗

112μ (34)

of isomorphisms of line bundles over Y [2].

1.3 Stable Morphisms and their Composition

In this section G1 and G2 are two bundle gerbes over M . I denote the data of both
bundle gerbes by the same letters as in Definition 1.2a but with indices 1 or 2
respectively. For the following definition, recall that all vector bundles are complex
hermitian vector bundles with connection.

Definition 1.3a. A stable morphism A : G1 → G2 of bundle gerbes is

• a surjective submersion ζ : Z → M which is called the covering of A,
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• two maps yi : Z → Yi for i = 1, 2 such that the diagram

Z
y2

y1

Y2

π2

Y1 π1
M

(35)

commutes,

• a vector bundle A → Z of rank n and

• an isomorphism
α : y∗

1L1 ⊗ ζ∗
2A −→ ζ∗

1A ⊗ y∗
2L2 (36)

of vector bundles over Z [2]

such that two axioms are satisfied, namely

(SM1) the curvature of A is a real 2-form and fixed by

curv(A) = y∗
2C2 − y∗

1C1 (37)

(SM2) the isomorphism α commutes with the isomorphisms μ1 and μ2 of the gerbes
in the sense that the diagram

y∗
1(π

∗
12L1 ⊗ π∗

23L1) ⊗ ζ∗
3A

∼=

y∗
1μ1⊗id

y∗
1π

∗
13L1 ⊗ ζ∗

3A
∼=

ζ∗
12y

∗
1L1 ⊗ ζ∗

23(y
∗
1L1 ⊗ ζ∗

2A)

1⊗ζ∗23α

ζ∗
13(y

∗
1L1 ⊗ ζ∗

2A)

ζ∗13α

ζ∗
12y

∗
1L1 ⊗ ζ∗

23(ζ
∗
1A ⊗ y∗

2L2)
∼=

ζ∗
12(y

∗
1L1 ⊗ ζ∗

2A) ⊗ ζ∗
23y

∗
2L2

ζ∗12α⊗1

ζ∗
12(ζ

∗
1A ⊗ y∗

2L2) ⊗ ζ∗
23y

∗
2L2

∼=

ζ∗
13(ζ

∗
1A ⊗ y∗

2L2)
∼=

ζ∗
1A ⊗ y∗

2(π
∗
12L2 ⊗ π∗

23L2) 1⊗y∗
2μ2

ζ∗
1A ⊗ y∗

2π
∗
13L2

(38)

of isomorphisms of vector bundles over Z [3] commutes.

Several remarks are in order:

(1) The existence of the isomorphism α imposes a condition for the curvature of
the vector bundle A. The condition (SM1) on the curvature is compatible with
this condition.

(2) There is always a canonical choice for the covering Z by taking the fibre product
Z := Y1 ×M Y2 of the coverings of the bundle gerbes. Restricted to this choice
of the covering, and to vector bundles of rank 1, Definition 1.3b coincides with
the definitions of stable isomorphisms in [Ste00, CJM02, GR02, SSW05].



16 1.3 Stable Morphisms and their Composition

(3) In the Appendix it is shown that admitting other coverings than the fibre pro-
duct is not an essential generalization, which means that any stable isomorphism
is “equivalent” to another one whose covering is the fibre product.

Definition 1.3b. A stable morphism A : G1 → G2 is called stable isomorphism,
if the vector bundle A is a line bundle, i.e. has rank 1.

I will show in section 2.5, that the term isomorphism is justified in the sense that
stable isomorphisms as defined here are exactly those stable morphisms which are
invertible in a certain sense.

An important feature of stable morphisms is that they can be composed. Already
when defining the composition it turns out that admitting general coverings for
stable isomorphisms simplifies calculations a lot compared to the composition in
[Ste00]. Let G1, G2 and G3 be three bundle gerbes over M , and let A : G1 → G2 and
A′ : G2 → G3 be two stable morphisms. Consider the fibre product Z̃ := Z ×Y2 Z ′,
i.e. the commutative diagram

Z̃
z z′

Z

y2

y1

Z ′

y′
2

y′
3

Y1

π1

Y2

π2

Y3

π3

M M M

(39)

The space Z̃ comes with a canonical surjective submersion ξ̃ : Z̃ → M .

Definition 1.3c. The composition of A with A′ is the stable isomorphism

A′ ◦ A : G1 −→ G3, (40)

consisting of the covering ξ̃ : Z̃ → M , together with the two projections ỹ1 := y1 ◦ z
and ỹ3 := y′

3 ◦ z′, the line bundle Ã := z∗A ⊗ z′∗A′ over Z̃ and the isomorphism

α̃ := (id ⊗ z′∗α′) ◦ (z∗α ⊗ id) (41)

of line bundles over Z̃ [2].

It is easy to verify that everything is well-defined: the diagram

Z̃
ỹ3

ỹ1

Y3

π3

Y1 π1
M

(42)
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is the outer bound of diagram (39), and hence commutes. For the curvature of Ã we
find

curv(Ã) = z∗curv(A) + z′∗curv(A′) (43)

= z∗y∗
2C2 − z∗y∗

1C1 + z′∗y′
3
∗C3 − z′∗y′

2
∗C2 (44)

= ỹ∗
3C3 − ỹ∗

1C1 (45)

so that axiom (SM1) is satisfied. To see that the composition (41) gives the correct
isomorphism

α̃ : ỹ∗
1L1 ⊗ ζ̃∗

2 Ã −→ ζ̃∗
1 Ã ⊗ ỹ′∗

3 L3, (46)

first notice that I suppressed three occurrences of the canonical natural equivalence
α of the monoidal category Bun(Z̃ [2]). The extended version of (41) is

α̃ := αA,A′,L3 ◦ (id ⊗ z′∗α′) ◦ α−1
A,L2,A′ ◦ (z∗α ⊗ id) ◦ αL1,A,A′ , (47)

where I dropped the pullbacks in the indices of α for simplicity. The natural equi-
valences arrange the bracketing of tensor products such that the composition of the
maps

z∗α ⊗ id : (ỹ∗
1L1 ⊗ z∗ζ∗

2A) ⊗ z′∗ζ ′
2
∗A′ → (z∗ζ∗

1A ⊗ z∗y∗
2L2) ⊗ z′∗ζ ′

2
∗A′ (48)

id ⊗ z′∗α′ : z∗ζ∗
1A ⊗ (z′∗y∗

2L2 ⊗ z′∗ζ ′
2
∗A′) → z∗ζ∗

1A ⊗ (z′∗ζ ′
1
∗A′ ⊗ ỹ∗

3L3) (49)

gives the correct isomorphism (46).

Axiom (SM2) for this isomorphism is the commutativity of the diagram (I omit
the expressions at the vertices for simplicity)

∗
ỹ∗
1μ1⊗1⊗1

1⊗ζ̃∗23z∗α⊗1

∗

ζ̃∗13z∗α⊗1∗

1⊗1⊗ζ̃∗23z′∗α′

∗

ζ̃∗12z∗α⊗1⊗1

∗

1⊗ζ̃∗13z′∗α′∗

1⊗ζ̃∗12z′∗α′⊗1

∗
1⊗1⊗ỹ∗

3μ3
∗

(50)

of isomorphisms of vector bundles over Z̃. To prove its commutativity, note that the
isomorphisms ζ̃∗

23z
′∗α′ and ζ̃∗

12z
∗α on the left hand side of the diagram act indepen-

dently on different tensor factors, so that one can permute their order. After that,
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the diagram splits horizontally:

∗
z∗y∗

1μ1⊗1⊗1

1⊗ζ̃∗23z∗α⊗1

∗

ζ̃∗13z∗α⊗1∗

ζ̃∗12z∗α⊗1⊗1

∗
z′∗y′∗

2 μ2

z∗y∗
2μ2

1⊗1⊗ζ̃∗23z′∗α′

∗

1⊗ζ̃∗13z′∗α′∗

1⊗ζ̃∗12z′∗α′⊗1

∗
1⊗1⊗z′∗y′

3
∗μ3

∗

(51)

The upper half diagram is the pullback of axiom (SI2) for the isomorphism α by z,
and the lower half diagram is the pullback of axiom (SI2) for α′ by z′. So the two
half diagrams commute. Both labels at the middle arrow coincide, so that the outer
bound diagram commutes, too.

An immediate consequence of Definition 1.3c is, that the composition of stable
morphisms restricts to a composition of stable isomorphisms:

Corollary 1.3d. If A and A′ are stable isomorphisms, also the composed
stable morphism A′ ◦ A is a stable isomorphism.

1.4 Trivializations and Bundle Gerbe Modules

Recall the definition of the canonical bundle gerbe I% with B-field %. Then the
following definition is quite natural:

Definition 1.4a. A trivialization of a bundle gerbe G is a 2-form % ∈ Ω2(M)
together with a stable isomorphism T : G → I%. A bundle gerbe G is called topologi-
cally trivial, if it admits a trivialization. It is called trivial, if it admits a trivialization
with % = 0.

To show, that this definition reproduces the usual definition of a trivialization
[SSW05, GR02, CJM02], I write out the details: a stable isomorphism T : G → I%

consists by definition of a line bundle T → Z. Assume that the covering Z is chosen
canonically, which in this particular situation amounts to Z = Y ×M M ∼= Y . So T
is a line bundle over Y . The projection from Z to Y is here the identity map, and
the projection from Z to M is the surjective submersion π : Y → M of the bundle
gerbe G. The trivialization T further consists of an isomorphism of line bundles,
which simplifies here to an isomorphism

τ : L ⊗ π∗
2T −→ π∗

1T (52)
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of line bundles over Y [2]. The axiom (SM2) for a stable morphism is the compatibility
of the isomorphism τ with the isomorphism μ of G, and reduces here to:

π∗
12L ⊗ π∗

23L ⊗ π∗
3T

∼=

μ⊗id
π∗

13L ⊗ π∗
3T

∼=

π∗
12L ⊗ π∗

23(L ⊗ π∗
2T )

1⊗π∗
23τ

π∗
13(L ⊗ π∗

2T )

π∗
13τ

π∗
12L ⊗ π∗

23π
∗
1T

∼=

π∗
13π

∗
1T
∼=

π∗
12(L ⊗ π∗

2T )
π∗
12τ

π∗
12π

∗
1T

(53)

Equation (52) and diagram (53) are exactly the conditions one demands usually for
a trivialization [CJM02]. Additionally, axiom (SM1) for stable morphisms is here
equivalent to

π∗% = C − curv(T ). (54)

The existence of a 2-form % with this property usually has to be derived by descent
theory, but here just follows from the axioms. Note that from (54) it follows that
curv(G) = d%, which shows that the curvature of a topological trivial bundle gerbe
is an exact form.

Now I show that bundle gerbe modules, which arise in particular as boundary
conditions of open world sheets, are special stable morphisms.

Definition 1.4b. A bundle gerbe module of a bundle gerbe G is a 2-form
ω ∈ Ω2(M) together with a stable morphism E : G → Iω. The 2-form ω is called the
curvature of the bundle gerbe module.

I write out this definition in detail. Let again π : Y → M be the covering of the
gerbe, L → Y [2] its line bundle with isomorphism μ, and C ∈ Ω2(Y ) the curving
of G. Assume that the covering of the stable morphism E is chosen canonically,
Z = Y ×M M ∼= Y . Then, a bundle gerbe module consists of a vector bundle E over
Y , and of an isomorphism

% : L ⊗ π∗
2E −→ π∗

1E (55)

of vector bundles over Y [2]. which is compatible with the isomorphism μ by axi-
om (SM2) for stable morphisms. This compatibility condition here simplifies to a
diagram of isomorphisms of vector bundles over Z [3] = Y [3], namely

π∗
12L ⊗ π∗

23(L ⊗ π∗
2E)

1⊗π∗
23%

∼=

π∗
12L ⊗ π∗

23π
∗
1E

∼=

π∗
12L ⊗ π∗

23L ⊗ π∗
3E

μ⊗1

π∗
12(L ⊗ π∗

2E)

π∗
12%

π∗
13L ⊗ π∗

3E
∼=

π∗
12π

∗
1E
∼=

π∗
13(L ⊗ π∗

2E)
π∗
13%

π∗
13π

∗
1E

(56)
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This diagram explains the terminology “module”, since it looks like the condition of
a (left) action of L on E. Axiom (SM1) here implies

curv(E) = π∗ω − C. (57)

From this equation one obtains for the curvature H = curv(G) of the bundle gerbe
G the property

H = dω. (58)

In fact Definition 1.4b only covers so-called symmetric bundle gerbe modules,
which are important for the applications of bundle gerbes in the Wess-Zumino-
Witten-model [Gaw05]. In the mathematical literature [BCM+02, CJM02], one also
finds the more general definition of a “non-symmetric” bundle gerbe module. It coin-
cides (apart from the more general coverings here) by dropping axiom (SM1), which
restricts the curvature of the vector bundle E. But also from the 2-categorial point
of view, the restriction of the curvature comes naturally, because when dropping
axiom (SM1) for stable morphisms, Theorem 2.5a wouldn’t hold anymore.

In section 2.6 I show how trivializations and bundle gerbe modules are involved in
the computation of holonomies of bundle gerbes along open and closed world sheets.

1.5 Morphisms of stable Morphisms

Suppose there are two bundle gerbes G1 and G2 over M , with two stable morphisms
A,A′ : G1 → G2. Recall that the stable morphisms provide vector bundles A and A′

over coverings Z and Z ′ respectively.

Definition 1.5a. A morphism of stable morphisms

β : A =⇒ A′ (59)

consists of

• a surjective submersion w : W → M called the covering of β,

• two maps z : W → Z and z′ : W → Z ′ such that the two diagrams

W
z′

z

Z ′

y′
i

Z yi
Yi

(60)

commute for i = 1, 2, and

• an isomorphism β : z∗A → z′∗A′ of vector bundles over W ,

such that the following axiom (MSM) is satisfied: β is compatible with the isomor-
phisms α and α′ in the sense that the diagram

z∗y∗
1L1 ⊗ ζ∗

2z
∗A z∗α

1⊗ζ∗2β

ζ∗
1z

∗A ⊗ z∗y∗
2L2

ζ∗1β⊗1

z′∗y′
1
∗L1 ⊗ ζ∗

2z
′∗A′ z′∗α′

ζ∗
1z

′∗A′ ⊗ z′∗y′
2
∗L2

(61)

of isomorphisms of vector bundles over W [2] commutes.
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In the diagram I have dropped some occurrences of canonical natural equivalences
to improve the readability. I have three remarks on this definition:

(1) It is clear that morphisms β : A ⇒ A′ of stable morphisms only exist, if the
vector bundles A and A′ have the same rank.

(2) There is always a canonical choice for the covering W , namely W := Z×(Y1×MY2)

Z ′. In the case that Z = Z ′ = Y1×M Y2 are also chosen canonically, this reduces
to W = Y1 ×M Y2.

(3) For the canonical choices W = Z = Z ′ = Y1 ×M Y2, and stable isomorphisms A
and A′, Definition 1.5a coincides with the definition of so-called transforma-
tions in [Ste00] and with the definition of morphisms of stable isomorphisms in
[SSW05].

To compare morphisms of stable morphisms with different coverings, I introduce
an equivalence relation on the set of morphisms of stable morphisms.

Definition 1.5b. Two morphisms β1 : A ⇒ A′ and β2 : A ⇒ A′ of stable
morphisms with coverings W1 and W2 respectively are considered to be equivalent, if
there is a smooth manifold W with surjective submersions wi : W → Wi for i = 1, 2
such that the diagrams

W
w2

w1

W2

z2

W1 z1
Z

and

W
w2

w1

W2

z′2

W1
z′1

Z ′

(62)

commute, and the isomorphisms β1 and β2 coincide when pulled back to W , i.e.

w∗
1β1 = w∗

2β2. (63)

Note that equation (63) makes sense because of the commutativity of the diagrams
(62). It is easy to verify that Definition 1.5b defines an equivalence relation.

If there is a third stable morphism A′′ : G1 → G2, and two morphisms β1 : A ⇒
A′ and β2 : A′ ⇒ A′′ of stable morphisms, both morphisms can be composed.
Diagrammatically, the composition of morphisms of stable morphisms is denoted by

G1

A

A′

A′′

G2

β1

β2

. (64)

Definition 1.5c. The composition of the morphisms β1 : A ⇒ A′ and β2 :
A′ ⇒ A′′ is the morphism

β2 ◦ β1 : A =⇒ A′′ (65)

whose covering is the fibre product W := W1 ×Z′ W2 in the commuting diagram

W
w2

w1

W2

z′2

W1
z′1

Z ′

(66)
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together with the projections z := z1 ◦ w1 and z′′ := z′′2 ◦ w2 to the coverings Z and
Z ′′ of A and A′′ respectively, and whose isomorphism is

w∗
2β2 ◦ w∗

1β1 : z∗A −→ z′′∗A′′. (67)

The composed morphism β2 ◦β1 clearly satisfies the axiom (MSM) for morphisms
of stable morphisms. It is furthermore well-defined on equivalence classes of mor-
phisms of stable morphisms: if one takes other representatives β′

1 and β′
2 with co-

verings W ′
1 and W ′

2 respectively, so that there exist spaces Ŵ1 and Ŵ2 according to
Definition 1.5b, then the compositions β2 ◦β1 and β′

2 ◦β′
1 coincide when pulled back

to Ŵ := Ŵ1 ×Z′ Ŵ2.



2 The 2-Category of Bundle Gerbes

The structure defined in the previous chapter fits in the framework of a 2-category.
The aim of the present chapter is to make this statement precise: I define the 2-
category BGrb(M) of bundle gerbes over a smooth manifold M .

In section 2.1 I give the definition of a 2-category, consisting of structure and
axioms. In the following two sections, I relate the definitions of the first chapter
to the structure of the 2-category of bundle gerbes. In section 2.4 I check that the
axioms of a 2-category are satisfied by this structure. This completes the definition
of BGrb(M).

In section 2.5 I relate the definition of a stable isomorphism from section 1.3
to the notion of a 1-isomorphism one has in every 2-category, and show that they
coincide. This is applied in section 2.6 to give short proofs of the well-definedness of
the definitions of holonomy along world sheets with and without boundaries.

2.1 The Concept of a 2-Category

The definition of a 2-category given below is the straight-forward categorification
of Definition 1.1a of a category. The main concept is to replace equalities by
natural equivalences which satisfy certain natural coherence conditions. So, the three
equalities in the axioms (C1) and (C2) are replaced by three natural equivalences.
This requires that the composition map is replaced by a composition functor, and
the identity morphism is replaced by an identity functor. In turn, this requires that
the sets of morphisms become categories. This way one has arrived at the following
definition.

Definition 2.1a. A 2-category C consists of the following data:

• A set of objects Obj(C).

• For each pair G,G ′ of objects a category Hom(G,G ′).

• For each triple G,G ′,G ′′ of objects a functor

m : Hom(G,G ′) × Hom(G ′,G ′′) −→ Hom(G,G ′′), (68)

called the composition functor,
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together with a natural equivalence of functors

Hom(G,G ′) × Hom(G ′,G ′′)
×Hom(G ′′,G ′′′)

id×m

m×id

Hom(G,G ′) × Hom(G ′,G ′′′)

a m

Hom(G,G ′′) × Hom(G ′′,G ′′′) m Hom(G,G ′′′)

for each quadruple G, G ′, G ′′, G ′′′ of objects.

• For each object G a functor 1G : 1 → Hom(G,G) together with natural equivalences

Hom(G,G ′)

id

1G×id Hom(G,G)
×Hom(G,G ′)

λ m

Hom(G,G ′)

and

Hom(G,G ′)

id

id×1G′ Hom(G,G ′)
×Hom(G ′,G ′)

% m

Hom(G,G ′)

.

for each two objects G and G ′.

This structure has to satisfy two coherence axioms:

(2C1) The Pentagon identity:

Hom(G1,G2)
×Hom(G2,G3)
×Hom(G3,G4)
×Hom(G4,G5)

id×m×id

id×id×m

Hom(G1,G2)
×Hom(G2,G3)
×Hom(G3,G5)

id×m

Hom(G1,G2)
×Hom(G2,G4)
×Hom(G4,G5)

id×m

m×idC
Hom(G1,G2)
×Hom(G2,G5)α

mHom(G1,G4)
×Hom(G4,G5)

m

Hom(G1,G5)

id×α =

Hom(G1,G2)
×Hom(G2,G3)
×Hom(G3,G4)
×Hom(G4,G5)

m×id×id

id×m×idC

id×id×m

Hom(G1,G2)
×Hom(G2,G3)
×Hom(G3,G5)

id

m×id

id×m

Hom(G1,G3)
×Hom(G3,G4)
×Hom(G4,G5)

α−1×id

m×id

id×m

Hom(G1,G2)
×Hom(G2,G5)

α

m
Hom(G1,G2)
×Hom(G2,G4)
×Hom(G4,G5)

m×id

Hom(G1,G3)
×Hom(G3,G5)

α m

Hom(G1,G4)
×Hom(G4,G5) m Hom(G1,G5)
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(2C2) The compatibility of λ and % with α:

Hom(G1,G2)
×Hom(G2,G3)

m

id×1×id

Hom(G1,G2)
×Hom(G2,G2)
×Hom(G2,G3)

id×λ
id×m

Hom(G1,G2)
×Hom(G2,G3)

m

Hom(G1,G3)

=

Hom(G1,G2)
×Hom(G2,G3)

id×id

id×1×id

Hom(G1,G2)
×Hom(G2,G2)
×Hom(G2,G3)

m×id

id×m

Hom(G1,G2)
×Hom(G2,G3)

α

m

Hom(G1,G2)
×Hom(G2,G3) m Hom(G1,G3)

%×id

As a trivial example of a 2-category, take any monoidal category (C,⊗, 1, α, λ, %),
and define a 2-category with only one object • by Hom(•, •) := C, m := ⊗ and
1• = 1. Then the rest of the data and axioms reduce to the data and axioms of a
monoidal category.

For two objects G, G ′ of a 2-category C, a 1-morphism A is an object of the
category Hom(G,G ′) and is denoted by A : G → G ′. A 2-morphism is a morphism
β : A1 → A2 in the category Hom(G,G ′) and – as a 2-morphism of C – is denoted
by β : A1 ⇒ A2. This notation comes from the 2-category Cat of categories, whose
1-morphisms are functors, and whose 2-morphisms are natural transformations.

A 2-morphism β : A1 ⇒ A2 of 1-morphisms A1,A2 : G → G ′ is called a 2-
isomorphism, if it is an isomorphism in the category Hom(G,G ′); equivalently: if
there is another 2-morphism β′ : A2 ⇒ A1 such that β′ ◦ β = idA1 and β ◦ β′ =
idA2 . A 1-morphism A : G → G ′ is called 1-isomorphism, if there is another 1-
morphism A′ : G ′ → G, and two 2-isomorphisms ir : m(A,A′) ⇒ 1G(•) and il :
m(A′,A) ⇒ 1G′(•). It can be shown that the “inverse”1-morphism A′ is unique
up to isomorphisms in Hom(G ′,G), i.e. unique up to 2-isomorphisms in C. The 1-
isomorphisms form, together with all 2-morphism between them, a full subcategory
Iso(G,G ′) of Hom(G,G ′).

Sometimes (small) 2-categories are defined as a set of objects, a set of 1-morphisms
and set of 2-morphisms, together with one composition for 1-morphisms, and
two compositions for 2-morphisms, called horizontal and vertical composition, and
with various axioms. This is equivalent to Definition 2.1a: the composition of 1-
morphisms is the functor m on objects of Hom(G,G ′) × Hom(G ′,G ′′), and the two
compositions of 2-morphisms are given by the functor m acting on morphisms of
Hom(G,G ′)×Hom(G ′,G ′′) (horizontal composition, cf. (71)) and by the composition
map of the category Hom(G,G ′) (vertical composition, cf. (64)). Then the axioms
(2C1) and (2C2) are stated as compatibility conditions between horizontal and ver-
tical compositions.
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2.2 Structure I: Objects and Functors

To define the 2-category BGrb(M) of bundle gerbes over a smooth manifold M ,
I first have to specify the structure. In this section, the objects G, the morphism
categories Hom(G,G ′), the composition functor m and the functor 1G are defined.

The objects are of course bundle gerbes over M .

For each two bundle gerbes G1 and G2 over M define the category Hom(G1,G2) as
follows. Its objects are stable morphisms A : G1 → G2, its morphisms are equivalence
classes of morphisms β : A ⇒ A′ of stable morphisms under the equivalence relation
from Definition 1.5b, and the composition is the composition of morphisms of stable
morphisms as defined in section 1.5. For every stable morphism A there is the
identity morphism id : A ⇒ A, which has the same covering as A, and the identity
isomorphism. Both axioms (C1) and (C2) of a category are satisfied. Additionally,
each morphism β is invertible, hence Hom(G1,G2) is a groupoid, and I call it the
groupoid of stable morphisms.

In particular, if G is a gerbe over M , End(G) := Hom(G,G) is called the groupoid
of gauge transformations of G, and Aut(G) := Iso(G,G) is called the groupoid of
gauge equivalences of G. Such categories have been postulated by N. Hitchin in his
lecture at the Arbeitstagung 2001 of the MPIM in Bonn.

So the 1-morphisms of BGrb(M) are stable morphisms, and the 2-morphisms are
morphisms of stable morphisms, and every 2-morphism is even a 2-isomorphism.

For three bundle gerbes G1, G2 and G3 I define the composition functor

m : Hom(G1,G2) × Hom(G2,G3) −→ Hom(G1,G3) (69)

as follows. It is quite clear that on objects A1 : G1 → G2 and A2 : G2 → G3 it is
defined by the composition of stable morphisms from Definition 1.3c,

m(A1,A2) := A2 ◦ A1. (70)

Now let β1 : A1 ⇒ A′
1 and β2 : A2 ⇒ A′

2 be two morphisms of stable morphisms
representing morphisms in the categories Hom(G1,G2) and Hom(G2,G3) respectively.
The composition I have to define is graphically denoted by the following diagram:

G1

A1

A′
1

β1 G2

A2

A′
2

β2 G3 = G1

A2◦A1

A′
2◦A

′
1

m(β1, β2) G3 (71)

Recall that the compositions A2 ◦ A1 and A′
2 ◦ A′

1 of stable morphisms consist of
vector bundles Ã := z∗1A1 ⊗ z∗2A2 over Z̃ := Z1 ×Y2 Z2 and Ã′ := z′∗1 A′

1
∗ ⊗ z′∗2 A′

2 over
Z̃ ′ := Z ′

1 ×Y2 Z ′
2. Recall further that the morphisms β1 and β2 of stable morphisms

are isomorphisms βi : z∗i Ai → z′∗i A′
i of vector bundles over spaces Wi for i = 1, 2.

Now choose the covering
W := W1 ×Y2 W2 (72)

for the morphism m(β1, β2). Here Wi projects to Y2 via y2 ◦ zi = y′
2 ◦ z′i, where the

equality comes from the commuting diagram (60) in the definition of a morphism
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of stable morphisms. I also have to define projections z̃ : W → Z̃ and z̃′ : W → Z̃ ′,
which is done by sending an element (w1, w2) ∈ W to (z1(w1), z2(w2)) ∈ Z1 × Z2,
which in fact lies in Z̃ since the fibre product (72) is taken over Y2, and analogous
for the primed quantities. Also by the properties of the coverings W1 and W2 one
obtains the commuting diagrams

W
z̃′

z̃

Z̃ ′

y′
i

Z̃ yi
Yi

(73)

for i = 1, 3. So, W is a valid choice for the covering of m(β1, β2). By construction,
we have the relations

zi ◦ z̃ = zi ◦ wi and z′i ◦ z̃′ = z′i ◦ wi (74)

as maps from W to Zi and Z̃i respectively. Now I am in the position to define the
isomorphism β̂ of the morphism m(β1, β2) by

β̂ := w∗
1β1 ⊗ w∗

2β2 : z̃∗Ã −→ z̃′∗Ã′, (75)

which is well-defined due to the relations (74) and the definitions of βi, Ã and Ã′.
One can easily check that the axiom (MSM) for morphisms of stable isomorphisms
is satisfied, since I just took the pullback and the tensor product of β1 and β2, which
satisfy the axiom. It is also easy to see that the definition of m(β1, β2) does not
depend on the choice of representatives β1 and β2.

One may check immediately, that by (70) and (75) a functor is defined: the com-
position of morphisms of stable morphisms is respected, and the identity morphisms
of two stable morphisms are mapped to the identity morphism of the composition
of the stable morphisms.

Consider a single bundle gerbe G over M . To define the functor 1G : 1 →
Hom(G,G), it is sufficient to define the image 1G(•) of the object • in 1. Let L → Y [2]

be the line bundle of the bundle gerbe G and μ its isomorphism. For the definition
of the stable isomorphism LG := 1G(•) choose the covering Z = Y [2] and the line
bundle L itself. Then note that

l := π∗
124μ

−1 ◦ π∗
134μ : π∗

13L ⊗ π∗
34L −→ π∗

12L ⊗ π∗
24L (76)

is an isomorphism of line bundles over Z [2] = Y [4]. So define LG := (L, l), which gives
in fact a stable isomorphism, since L is a line bundle and the gerbe axiom (G1) for
the curvature of L is here equivalent to the axiom (SM1) for the curvature of the
line bundle of a stable isomorphism. Axiom (SM2) is equivalent to three copies of
axiom (G2) for the bundle gerbe G.

2.3 Structure II: Natural Equivalences

For a 1-morphism A : G → G ′ the natural equivalences λ and % are 2-morphisms

λA : m(1G(•),A) =⇒ A (77)

%A : m(A, 1G′(•)) =⇒ A (78)
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and the condition (4) on natural transformations is, that for every 2-morphism
β : A ⇒ A′ the diagrams

m(1G(•),A)

m(id,β)

λA
A

β

m(1G(•),A′)
λA′

A′

and

m(A, 1G′(•))

m(β,id)

%A
A

β

m(A′, 1G′(•)) %A′ A′

(79)

of 2-morphisms commute.

In the case of the 2-category BGrb(M) of bundle gerbes over M one is concerned
with the composition of the identity stable isomorphism 1G(•) = LG defined in
section 2.2, with a stable morphism A = (A,α). Recall that A is a vector bundle
over some covering Z and that the composition is the stable morphism A ◦ LG

with covering Z̃ = Y [2] ×Y Z, vector bundle Ã = y∗L ⊗ z∗A and isomorphism
α̃ = (id⊗ z∗α) ◦ (y∗l⊗ id). For the definition of the morphism λA : A◦LG ⇒ A take
the covering Z with the map id : Z → Z to the covering of A and the map

z̃ : Z −→ Z̃ : z 7−→ (y(z), y(z), z) (80)

to the covering of A ◦ LG, which is a section of the projection z : Z̃ → Z. Note
that the two diagrams (60) from the definition of a morphism of stable morphisms
commute, so Z is a valid covering for λA. Also the diagram

Z
z̃

y

Z̃

y

Y
Δ Y [2]

(81)

commutes, so that one obtains z̃∗Ã = y∗Δ∗L ⊗ A. Now I define

λA := λA ◦ (y∗tμ ⊗ 1) : z̃∗Ã −→ A, (82)

where λA : 1⊗A → A is the canonical natural equivalence of the monoidal category
Bun(Z).

Proposition 2.3a. The isomorphism λA from equation (82) defines a mor-
phism of stable morphisms λA : A◦LG ⇒ A, and the left diagram of (79) commutes.

Proof . First I show that λA satisfies axiom (MSM), which demands that the
diagram

y∗L ⊗ ζ∗
2 z̃

∗Ã
z̃∗α̃

1⊗ζ∗2λA

ζ∗
1 z̃

∗Ã ⊗ y′∗L′

ζ∗1λA⊗1

y∗L ⊗ ζ∗
2A

α ζ∗
1A ⊗ y′∗L′

(83)
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of isomorphisms of vector bundles over Z [2] commutes. Pasting in the definition of
α̃, of the isomorphism l and of λA, I obtain the diagram

∗ 1⊗α

z̃∗y∗μ∗
124μ⊗1

∗

λA(ζ∗1y∗tμ⊗1)⊗1

∗

z̃∗y∗π∗
134μ−1⊗1

∗
1⊗λA(ζ∗2y∗tμ⊗1)

∗ α ∗

(84)

Note that by axiom (MC2) of the monoidal category Bun(Z) one has 1⊗λA(ζ∗
2y

∗tμ⊗
1) = %A(1 ⊗ ζ∗

2y
∗tμ) ⊗ 1. Now consider the pullback of the associativity axiom (G2)

for the isomorphism μ of the bundle gerbe G by Δ1122 : Y [2] → Y [4], which is

Δ∗
122μ ◦ (Δ∗

112μ ⊗ 1) = Δ∗
112μ ◦ (1 ⊗ Δ∗

122μ). (85)

Observe that by construction of the maps y and z̃ we also have the relations

π134 ◦ y ◦ z̃ = Δ∗
122 ◦ y and π124 ◦ y ◦ z̃ = Δ112 ◦ y. (86)

Combining (85) and (86) with Proposition 1.2b one obtains that the three iso-
morphisms on the left hand side of the diagram (84) compose to λA(y∗π∗

1tμ⊗1)⊗1 =
λA(ζ∗

1y
∗tμ ⊗ 1) ⊗ 1, so that the diagram obviously commutes.

For the second part of the proof I rewrite the left diagram of (79) in terms of
isomorphisms of line bundles. Let W be the covering of the morphism β : A ⇒ A′

with maps z : W → Z and z′ : W → Z ′. By definition of the composition of
morphisms, β ◦ λA has the covering Z ×Z W ∼= W , and λA′ ◦ m(id, β) has the
covering (Y [2]×Y W )×(Y [2]×Y Z′) Z

′ ∼= W . So the two morphisms of stable morphisms
I have to compare already are defined over the same covering, hence the diagram is
equivalent to a diagram of isomorphisms of line bundles over W , namely

z∗z̃∗Ã
tμ⊗1

1⊗β

z∗A

β

z′∗z̃′∗Ã′
tμ⊗1 z′∗A′

(87)

which obviously commutes.

The discussion of the natural equivalence % is completely analogous to the one of
λ, here one ends up with a morphism %A : LG′ ◦A ⇒ A of stable morphisms, which
is defined by

%A := %A ◦ (1 ⊗ y′∗tμ′). (88)

Now I come to the definition of the natural equivalence α. For three 1-morphisms

G1
A12 G2

A23 G3
A34 G4

(89)
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the natural equivalence α is a 2-isomorphism

αA12,A23,A34 : m(A12,m(A23,A34)) =⇒ m(m(A12,A23),A34), (90)

and the condition (4) on natural transformations is, that for three 2-morphisms

G1

A12

A′
12

β12 G2

A23

A′
23

β23 G3

A34

A′
34

β34 G4 (91)

the diagram

m(A12,m(A23,A34))

m(β12,m(β23,β34))

αA12,A23,A34 m(m(A12,A23),A34)

m(m(β12,β23),β34)

m(A′
12,m(A′

23,A
′
34))

αA′
12,A′

23,A′
34 m(m(A′

12,A
′
23),A

′
34)

(92)

of 2-morphisms commutes.
In the 2-category BGrb(M) of bundle gerbes over M one is concerned with the

two ways

m(A12,m(A23,A34)) = (A34 ◦ A23) ◦ A12 := (A1(24), α1(24)) (93)

m(m(A12,A23),A34) = A34 ◦ (A23 ◦ A12) := (A(13)4, α(13)4) (94)

of composing stable morphisms. The natural equivalence α here is a morphism

αA12,A23,A34 : (A1(24), α1(24)) =⇒ (A(13)4, α(13)4) (95)

of stable morphisms. The following diagrams correspond to diagram (39) from sec-
tion 1.3, applied to the two ways:

Z124

z12

z24

Z234
z23 z34

Z12

y2
y1

Z23

y2
y3

Z34

y3
y4

Y1

π1

Y2

π2

Y3

π3

Y4

π4

M M M M

Z134
z13

z34Z123
z12 z23

Z12

y2

y1

Z23

y2

y3

Z34

y3
y4

Y1

π1

Y2

π2

Y3

π3

Y4

π4

M M M M

(96)

In the left diagram, first the composition A24 := A34 ◦A23 is computed, while in the
diagram on the right hand side first the composition A13 := A23 ◦ A12 is done. By
definition of the composition of stable morphisms, the spaces Z123, Z234, Z134 and
Z124 are fibre products, in particular there is a canonical diffeomorphism

Z134 = (Z12 ×Y2 Z23) ×Y3 Z34 −→ Z12 ×Y2 (Z23 ×Y3 Z34) = Z124, (97)
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by which I identify the two spaces and call them just W in the following. This allows
me to choose W to be the covering of the morphism αA12,A23,A34 with the identity
maps to Z134 and Z124. Recall further that the vector bundles of the composed stable
morphisms are

A1(24) = z∗12A12 ⊗ z∗24(z
∗
23A23 ⊗ z∗34A34) (98)

A(13)4 = z∗13(z
∗
12A12 ⊗ z∗23A23) ⊗ z∗34A34. (99)

Recall from Definition 1.1b that the monoidal category Bun(W ) comes with a
natural equivalence α, which is an isomorphism

αB1,B2,B3 : B1 ⊗ (B2 ⊗ B3) −→ (B1 ⊗ B2) ⊗ B3 (100)

for any three vector bundles B1, B2 and B3 over W . So define αA12,A23,A34 to be the
isomorphism

αA12,A23,A34 := αz∗12A12,z∗23A23,z∗34A34 : A1(24) −→ A(13)4. (101)

I have to show that the axiom (MSM) for morphisms of stable morphisms is satisfied.
Here this is the commutativity of the diagram

y∗
1L1 ⊗ ζ∗

2A1(24)

1⊗ζ∗2αA12,A23,A34

α1(24)
ζ∗
1A1(24) ⊗ y∗

4L4

ζ∗1αA12,A23,A34⊗1

y∗
1L1 ⊗ ζ∗

2A(13)4 α(13)4
ζ∗
1A(13)4 ⊗ y∗

4L4

(102)

of vector bundles over W [2]. Recall that the isomorphisms of the composed stable
morphisms are defined by

α1(24) = αA12,A23⊗A34,L3 ◦ (1 ⊗ αA23,A34,L4) ◦ (1 ⊗ 1 ⊗ z∗34α34)

◦ (1 ⊗ α−1
A23,L3,A34

) ◦ (1 ⊗ z∗23α23 ⊗ 1) ◦ (1 ⊗ αL2,A23,A34)

◦ α−1
A12,L2,A23⊗A34

◦ (z∗12α12 ⊗ 1) ◦ αL1,A12,A23⊗A34 (103)

and

α(13)4 = αA12⊗A23,A34,L3 ◦ (1 ⊗ z∗34α34) ◦ α−1
A12⊗A23,L2,A34

◦ (αL1,A12,A23 ⊗ 1)

◦ (1 ⊗ z∗23α23 ⊗ 1) ◦ (α−1
A12,L2,A23

⊗ 1) ◦ (z∗12α12 ⊗ 1 ⊗ 1)

◦ (αL1,A12,A23 ⊗ 1) ◦ αL1,A12⊗A23,A34 . (104)

Up to occurrences of the natural equivalence α these two isomorphisms coincide, and
the commutativity of diagram (102) is equivalent to the Pentagon identity (MC1)
of the monoidal category Bun(W [2]).

It remains to show that α defined in (101) is a natural equivalence, i.e. the com-
mutativity of the diagram (92). I rewrite this diagram in terms of isomorphisms of
vector bundles over Z, namely

z∗12A12 ⊗ z∗24(z
∗
23A23 ⊗ z∗34A34)

z∗12β12⊗z∗24(z∗23β23⊗z∗34β34)

αz∗12A12,z∗23A23,z∗34A34
z∗13(z

∗
12A12 ⊗ z∗23A23) ⊗ z∗34A34

z∗13(z∗12β12⊗z∗23β23)⊗z∗34β34

z∗12A
′
12 ⊗ z∗24(z

∗
23A

′
23 ⊗ z∗34A

′
34)

αz∗12A′
12,z∗23A′

23,z∗34A′
34

z∗13(z
∗
12A

′
12 ⊗ z∗23A

′
23) ⊗ z∗34A

′
34



32 Axioms

Then the commutativity of this diagram is exactly the condition (4) that α is a
natural transformation.

2.4 Axioms

To complete the definition of the 2-category BGrb(M) of bundle gerbes over M , I
have to show, that the axioms (2C1) and (2C2) are satisfied. The Pentagon identity
(2C1) means for five bundle gerbes G1, ...,G5 and four stable morphisms Ai,i+1 for
i = 1, ..., 4 the commutativity of the following diagram:

m(A12,m(A23,m(A34,A45)))

αA12,A23,m(A34,A45)

m(idA12
,αA23,A34,A45

)
m(A12,m(m(A23,A34),A45))

αA12,m(A23,A34),A45m(m(A12,A23),m(A34,A45))

αm(A12,A23),A34,A45

m(m(m(A12,A23),A34),A45)
m(α−1

A12,A23,A34
,idA45

)
m(m(A12,m(A23,A34)),A45)

This form of the diagram from axiom (2C1) makes the name pentagon axiom [ML97]
obvious. To check the commutativity of this diagram, I work in the same notation
as in section 2.3. The coverings of all five compositions of stable morphisms are
again all canonically isomorphic and thus all identified with some space W . Then
the diagram is a diagram of isomorphisms of line bundles over W , namely:

z∗12A12 ⊗ (z∗23A23 ⊗ (z∗34A34 ⊗ z∗45A45))

αz∗12A12,z∗23A23,z∗34A34⊗z∗45A45

1⊗αz∗23A23,z∗34A34,z∗45A45

z∗12A12 ⊗ ((z∗23A23 ⊗ z∗34A34) ⊗ z∗45A45)

αz∗12A12,z∗23A23⊗z∗34A34,A45(z∗12A12 ⊗ z∗23A23) ⊗ (z∗34A34 ⊗ z∗45A45)

z∗12αA12⊗z∗23A23),z∗34A34,z∗45A45

((z∗12A12 ⊗ z∗23A23) ⊗ z∗34A34) ⊗ z∗45A45

α−1
z∗12A12,z∗23A23,z∗34A34

⊗1

(z∗12A12 ⊗ (z∗23A23 ⊗ z∗34A34)) ⊗ z∗45A45

Here α refers via the definition (101) to the natural equivalence of the monoidal
category Bun(W ). This way, the diagram is nothing else then the pentagon identity
(MC1) for the monoidal category Bun(W ), evaluated on the four vector bundles
z∗

i,i+1Ai,i+1, and thus commutes.

It remains to check axiom (2C2). The natural equivalences λ and % give for every
stable morphism A : G → G ′ morphisms λA : A ◦ LG ⇒ A and %A : LG′ ◦ A ⇒ A
of stable morphisms. In this terms, axiom (2C2) means for three bundle gerbes
G1,G2,G3 and two stable morphisms A : G1 → G2 and A′ : G2 → G3 the equality

m(idA, λA′) = m(%A, idA′) ◦ αA,LG2
,A′ (105)
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of morphisms of stable morphisms from m(A,m(LG2 ,A
′)) = (A′ ◦ LG2) ◦ A to

m(A,A′) = A′ ◦ A. By definition, the morphism m(idA, λA′) has the covering
W = Z ×Y2 Z ′ and the isomorphism

βλ = (1⊗λz′∗A′)◦ (1⊗ z′∗(y∗
2tμ2 ⊗ 1)) : z∗A⊗ (z′∗y∗

2L2 ⊗ z′∗A′) → z∗A⊗ z′∗A′ (106)

of line bundles over W . The morphism m(%A, idA′) has the same covering Z and the
isomorphism

β% = (%z∗A⊗1)◦(z∗(1⊗y∗
2tμ2)⊗z′∗A′) : (z∗A⊗z∗y∗

2L2)⊗z′∗A′ → z∗A⊗z′∗A′. (107)

Finally, since W ∼= Z×Y2Y
[2]
2 ×Y2Z

′, the space W is also the covering of the morphism
αA,LG2

,A′ , which provides us with an isomorphism

βα = αz∗A,y∗
2L2,z′∗A′ : z∗A ⊗ (z′∗y∗

2L2 ⊗ z′∗A′) → (z∗A ⊗ z′∗y∗
2L2) ⊗ A′ (108)

of line bundles over W . Note that this makes only sense because W is the fibre
product over Y2, and one has y2 ◦ z = y2 ◦ z′. Now the equality (105) is equivalent
to the equation

βλ = β% ◦ βα (109)

of isomorphisms of line bundles over W . Here the two occurrences of tμ2 drop out,
and it remains the triangle identity (MC2)

1 ⊗ λz′∗A′ = (%z∗A ⊗ 1) ◦ αz∗A,y∗
2L2,z′∗A′ (110)

for the monoidal category Bun(W ). Thus, axiom (2C2) is satisfied.

Remark 2.4a. A 2-category is called strict, if all the natural equivalences
αA1,A2,A3, λA and %A are identities. From the preceding two sections it is clear that
the 2-category BGrb(M) is not strict.

Note that this is an essential property of bundle gerbes. Even if one works with
strictified categories of vector bundles we still obtain non-trivial natural equivalences
for BGrb(M), namely

αA12,A23,A34 = id but λA = y∗tμ ⊗ 1 and %A = 1 ⊗ y′∗tμ (111)

instead of (101), (82) and (88).

2.5 1-Isomorphisms and stable Isomorphisms

In this section I relate the definition of a stable isomorphism from section 1.3 to the
definition of a 1-isomorphism of the 2-category BGrb(M) of bundle gerbes over M
from section 2.1.

Theorem 2.5a. The 1-isomorphisms of the 2-category BGrb(M) are exactly
the stable isomorphisms.
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Proof . A stable morphism A : G1 → G2 is a 1-isomorphism, if there is another
stable morphism A′ : G2 → G1 such that there are morphisms of stable morphisms
– which are isomorphisms – from the composition A′ ◦ A to the identity stable
morphism LG1 and from the composition A ◦ A′ to the identity stable morphism
LG2 . In this situation, the stable morphisms provide vector bundles A → Z and
A′ → Z ′. Recall that the compositions A′ ◦ A and A ◦ A′ provide vector bundles
Ã1 := z∗A⊗ z′∗A′ and Ã2 := z′∗A′⊗ z∗A. The existence of morphisms A′ ◦A ⇒ LG1

and A ◦ A′ ⇒ LG2 of stable morphisms implies

rank(Ã1) = rank(L1) = 1 and rank(Ã2) = rank(L2) = 1, (112)

so that A and A′ have to be line bundles. Hence, A and A′ are stable isomorphisms.
The proof that any stable isomorphism A is a 1-isomorphism is given in the

following by an explicit construction of an inverse stable isomorphism A−1 together
with two morphisms il : A◦A−1 ⇒ LG2 and ir : A−1◦A ⇒ LG1 of stable morphisms.

Let G1 and G2 be two bundle gerbes over M , and let A = (A,α) be a stable
isomorphism A : G1 → G2. Recall that A → Z is a line bundle whose curvature is
fixed by axiom (SM1), and

α : y∗
1L1 ⊗ ζ∗

2A −→ ζ∗
1A ⊗ y∗

2L2 (113)

is an isomorphism of line bundles over Z [2] satisfying axiom (SM2).
The inverse stable isomorphism A−1 = (A′, α′) I have to define will have the same

covering Z and have the dual line bundle A′ := A∗. Its isomorphism

α′ : y∗
2L2 ⊗ ζ∗

2A
′ −→ ζ∗

1A
′ ⊗ y∗

1L1 (114)

is the following concatenation:

y∗
2L2 ⊗ ζ∗

2A
′

∼=

ζ∗
1A

∗ ⊗ ζ∗
1A ⊗ y∗

2L2 ⊗ ζ∗
2A

∗

1⊗α−1⊗1

ζ∗
1A

∗ ⊗ y∗
1L1 ⊗ ζ∗

2A ⊗ ζ∗
2A

∗

∼=

ζ∗
1A

′ ⊗ y∗
1L1

(115)

Axiom (SM1) is

curv(A′) = −curv(A) = −(y∗
2C2 − y∗

1C1) = y∗
1C1 − y∗

2C2 (116)

and hence satisfied. Axiom (SM2) can easily be deduced from the fact that it is
satisfied by α. So I have defined a stable isomorphism A−1 : G2 → G1.

Now I have to construct the morphisms of stable morphisms

il : A ◦ A−1 =⇒ LG2 (117)

ir : A−1 ◦ A =⇒ LG1 . (118)
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It suffices to construct the second one; the construction of il is completely analogous.
Recall that the composition A−1 ◦ A consists of the covering Z̃ = Z ×Y2 Z, whose
projections on the factors I denote by zi : Z̃ → Z, the line bundle Ã = z∗1A ⊗ z∗2A

′

over Z̃, and the isomorphism α̃ = (id ⊗ z′∗α′) ◦ (z∗α ⊗ id) of line bundles over Z̃ [2].
For the covering of the morphism ir I choose Z̃ itself with projections id : Z̃ → Z̃
and the natural map

ỹ1 : Z̃ −→ Y
[2]
1 : (z1, z2) 7−→ (y1(z1), y1(z2)). (119)

to the covering Y
[2]
1 of the stable isomorphism LG1 . This is a valid choice since the

diagrams (60), here

Z̃
id

ỹ1

Z̃

y1◦z1

Y
[2]
1 π1

Y1

and

Z̃
id

ỹ1

Z̃

y1◦z2

Y
[2]
1 π2

Y1

(120)

commute. Let ỹ2 be the canonical projection from Z̃ to Y2, and let b be the embedding
b : Z̃ → Z [2]. Observe that the diagrams

Z̃
b

ỹ1

Z [2]

y1

Y
[2]
1

and

Z̃
b

y2

Z [2]

y2

Y2 Δ Y
[2]
2

(121)

commutes, so that one obtains an isomorphism

b∗α : ỹ∗
1L1 ⊗ z∗2A −→ z∗1A ⊗ y∗

2Δ
∗L2 (122)

of line bundles over Z̃. Then define the isomorphism ir : Ã → ỹ∗
1L1 by the following

concatenation:

Ã
∼=

z∗1A ⊗ 1 ⊗ z∗2A
∗

1⊗y∗
2 t−1

μ2
⊗1

z∗1A ⊗ y∗
2Δ

∗L2 ⊗ z∗2A
∗

b∗α−1⊗1

ỹ∗
1L1 ⊗ z∗2A ⊗ z∗2A

∗

∼=

ỹ∗
1L1

(123)

Here I use the isomorphism tμ2 : Δ∗L2 → 1 from Proposition 1.2b. Note that in the
last step when pairing the dual bundles z∗2A and z∗2A

∗ to the trivial line bundle, one
encounters the condition that A is a line bundle, i.e. that A is a stable isomorphism.
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It remains to show that ir satisfies the axiom (MSM) for morphisms of stable
morphisms. This is equivalent to the commutativity of the diagram

z∗1y
∗
1L1 ⊗ ζ̃∗

2 Ã
α̃

1⊗ζ̃∗2 ir

ζ̃∗
1 Ã ⊗ z∗2y

∗
1L1

ζ̃∗1 ir⊗1

ỹ∗
1π

∗
13L1 ⊗ ζ̃∗

2 ỹ
∗
1L1 l

ζ̃∗
1 ỹ

∗
1L1 ⊗ ỹ∗

1π
∗
24L1

(124)

of line bundles over Z̃ [2]. Using the definitions, this diagram is equivalent to the
following one:

∗
z∗1α⊗1

∗ ∗
z∗2α⊗1

∗

1⊗1⊗y∗
2π∗

2 tμ2

∗

1⊗y∗
2π∗

1 tμ2⊗1

∗

1⊗ζ̃∗2α

∗
ỹ∗
1π∗

124μ−1
1 ⊗1ỹ∗

1π∗
134μ−1

1 ⊗1
∗

1⊗ζ̃∗1α

(125)

Observe that both arrows with tμ2 commute with the arrows with z∗i α and move to
the top. There are two projections ζ134 : Z̃ [2] → Z [3] and ζ124 : Z̃ [2] → Z [3] regarding
Z̃ [2] as a subspace of Z [4]. The pullback of axiom (SM2) for α along ζ134 gives the
relation

(z∗1α ⊗ 1) ◦ (1 ⊗ ζ̃∗
2α) = (1 ⊗ y∗

2Δ
∗
122μ

−1
2 ) ◦ ζ∗

14α ◦ (ỹ∗
1π

∗
134μ1 ⊗ 1) (126)

and its pullback along ζ124 gives

(z∗2α ⊗ 1) ◦ (1 ⊗ ζ̃∗
1α) = (1 ⊗ y∗

2Δ
∗
112μ

−1
2 ) ◦ ζ∗

14α ◦ (ỹ∗
1π

∗
124μ1 ⊗ 1). (127)

Using these relations, the commutativity of the diagram reduces to the equation

(1 ⊗ y∗
2π

∗
1tμ2 ⊗ 1) ◦ (1 ⊗ y∗

2Δ
∗
112μ

−1
2 ) = (1 ⊗ 1 ⊗ y∗

2π
∗
2tμ2) ◦ (1 ⊗ y∗

2Δ
∗
122μ

−1
2 ). (128)

By Proposition 1.2b, both sides are separately the identity maps, so that the
diagram commutes, and ir is a morphism of stable morphisms. Since in every 2-
category inverse 1-isomorphisms are unique up to 2-isomorphisms, for every other
inverse stable isomorphism A′ : G ′ → G there is a morphism β : A′ ⇒ A−1 of stable
isomorphisms to the stable isomorphism A−1 constructed here.

2.6 Holonomy of Bundle Gerbes and Bundle Gerbe Modules

Now that I defined inverses of stable isomorphisms, recall the definition 1.4a of
a trivialization of a bundle gerbe as a stable isomorphism from the gerbe G to the
canonical bundle gerbe I% with B-field %. Concerning stable morphisms of those
canonical bundle gerbes, one has the following

Proposition 2.6a. For any stable morphism A = (A,α) : I%1 → I%2 with
covering ζ : Z → M , the pair (A,α−1) is an object in the descent category Des(B, ζ).
The vector bundle D∗

ζ(A,α−1) over M has the curvature %2 − %1.
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Proof . Although this proposition can be obtained as a corollary of Theorem A.1
from the appendix, I give a direct proof. By definition, the projections m1 : Z → M
to the covering M of I%1 and m2 : Z → M to the covering of I%2 coincide with
ζ. Since the line bundle of the canonical bundle gerbes is the trivial line bundle,
the isomorphism α gives an isomorphism α−1 : ζ∗

1A → ζ∗
2A of line bundles over Z [2].

Axiom (SM1) states curv(A) = ζ∗(%2−%1), and Axiom (SM2) reduces to the cocycle
condition for α, so that (A,α−1) is an object in the descent category Des(B, ζ).

Corollary 2.6b. If T1 : G → I%1 and T2 : G → I%2 are two trivializations of
the same bundle gerbe G, the 2-form %2−%1 on M is closed and has integral periods.

Proof . By Proposition 2.5a and Corollary 1.3d the composition T1◦T
−1

2 : I%2 →
I%1 is a stable isomorphism. Hence it defines a line bundle over M whose curvature
is %1−%2. The curvature of a line bundle is a closed 2-form with integral periods.

This corollary is essential for the definition of the holonomy of a topological trivial
bundle gerbe G over a two-dimensional oriented smooth manifold M . Choose a
trivialization T : G → I% and set

holG(M) := exp

(

2πi

∫

M

%

)

∈ U(1). (129)

This is independent of the choice of T and %.

Recall further Definition 1.4b of a symmetric bundle gerbe module as a stable
morphism from G to the canonical bundle gerbe Iω. Suppose now that M is a smooth
manifold with boundary, and let G be a bundle gerbe over M with a symmetric
bundle gerbe module5 E : G → Iω. Choose a trivialization T : G → I%. Now, E ◦T −1

is a stable morphism from I% to Iω defining a vector bundle E over M by Proposition
2.6a. The parallel transport of this vector bundle around ∂M gives elements in

U(rank(E)), such that their trace trholE(∂M) ∈ C is well-defined without respect
to a fixed covering point. Then define

holG,E(M) := exp

(

2πi

∫

M

%

)

∙ trholE(∂M) ∈ C. (130)

This expression is well-defined: if T ′ : G → I%′ is another trivialization, by the
properties of the 2-category BGrb(M) there is a morphism

E ◦ T ′−1 =⇒ (E ◦ T −1) ◦ (T ◦ T ′−1) (131)

of stable morphisms from I%′ to Iω. According to Proposition 2.6a one obtains
the vector bundles E ′ and E, and a line bundle A from the stable isomorphism
T ◦ T ′−1 : I%′ → I% with curvature % − %′. The existence of the morphism (131)
implies an isomorphism

5It would be sufficient to demand a bundle gerbe module for G restricted to the boundary
∂M . Since we have not defined pullbacks of bundle gerbes (and therewith restrictions), we have to
assume a global bundle gerbe module here.
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E ′ ∼= A ⊗ E, (132)

of vector bundles over M . Then,

trholE′(∂M) = trholA⊗E(∂M) (133)

= holA(∂M) ∙ trholE(∂M) (134)

= exp

(

2πi

∫

M

% − %′

)

∙ trholE(∂M) (135)

shows that the holonomy is well-defined.
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In the previous publications on bundle gerbes, p.e. [MS00, Ste00, GR02], stable
isomorphisms between two bundle gerbes G1 and G2 over M are exactly those stable
isomorphisms in the sense of Definition 1.3b, whose covering Z is the fibre product
of the coverings of the bundle gerbes, Z = Y1 ×M Y2. In this appendix I show, that
there is a stable isomorphism in the sense of the previous publications between G1

and G2, if and only if there is one in the sense of Definition 1.3b. This way, the
stable isomorphism classes of bundle gerbes coincide.

In fact I show more, namely that any stable morphisms with some covering Z de-
scends to another one whose covering is the fibre product, so that both are equivalent
as stable morphisms:

Theorem A.1. For any stable morphism A : G1 → G2 there is a stable morphism
SA : G1 → G2 with covering P := Y1×M Y2 such that A and SA are isomorphic objects
in Hom(G1,G2).

I split the proof in a sequence of constructions and propositions. The plan is the
following. First I define a more suitable stable morphism K : G1 → G2, consisting
of a vector bundle K over some space W , and of an isomorphism κ over W [2]. This
will be

K := LG2 ◦ A ◦ LG1 (136)

and is isomorphic to A as objects in Hom(G1,G2). This stable isomorphism will have
the following properties. The surjective submersion ω : W → M factors through P ,

ω = p ◦ w (137)

for some map w : W → P . I will define an isomorphism k : w∗
1K → w∗

2K over

the two-fold fibre product W
[2]
P := W ×P W such that (K, k) defines an object in

Des(B, w) and the isomorphism κ defines a morphism in Des(B, w[2]). Then I show
that

SA := D∗
w(K) := (D∗

w(K, k), D∗
w(κ)) (138)

defines a stable morphism with covering P .
Let the stable morphism A have covering ζ : Z → M , a vector bundle A over Z

and an isomorphism α over Z [2]. The covering ω : W → M of the stable morphism
K can be identified with

W ∼= Y1 ×M Z ×M Y2 (139)
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with the obvious projections y1, z and y2 in the respective factors and two mixed
projections,

y2
1 : W −→ Y

[2]
1 : (y1, z, y2) 7−→ (y1, y1(z)) (140)

y2
2 : W −→ Y

[2]
2 : (y1, z, y2) 7−→ (y2(z), y2) (141)

so that the vector bundle K of the stable isomorphism K is

K = (y2
1)

∗L1 ⊗ z∗A ⊗ (y2
2)

∗L2. (142)

The isomorphism
κ : y∗

1L1 ⊗ ω∗
2K → ω∗

1K ⊗ y∗
2L2 (143)

of the stable isomorphism K is an isomorphism of vector bundles over W [2] which is
given by

κ = (1 ⊗ 1 ⊗ (y2
2)

∗l2) ◦ (1 ⊗ z∗α ⊗ 1) ◦ ((y2
1)

∗l1 ⊗ 1 ⊗ 1). (144)

Define w := (y1, y2) : W → P so that equation (137) is satisfied. Now consider the

two-fold fibre product of W over P , which is W
[2]
P = Y1 ×M Z [2] ×M Y2. One has the

relation
z ◦ wi = ζi ◦ z (145)

as maps from W
[2]
P to Z for i = 1, 2, and an embedding

wM : W
[2]
P → W [2] : (y1, z1, z2, y2) 7→ (y1, z1, y2, y1, z2, y2). (146)

Consider the pullback of the isomorphism κ along the embedding wM . Using the
definition of the isomorphisms l1 and l2 from equation (76), this pullback has the
form

w∗
Mκ = (1 ⊗ 1 ⊗ (y2

2)
∗Δ∗

122μ
−1
2 ) ◦ (1 ⊗ k−1 ⊗ 1) ◦ ((y2

1)
∗Δ∗

112μ1 ⊗ 1 ⊗ 1), (147)

with an isomorphism k : w∗
1K → w∗

2K of line bundles over W
[2]
P given by

k = ((y2
1)

∗π∗
124μ1 ⊗ 1 ⊗ 1) ◦ (1 ⊗ z∗α−1 ⊗ 1) ◦ (1 ⊗ 1 ⊗ (y2

2)
∗π∗

134μ
−1
2 ). (148)

This composition indeed defines an isomorphism k : w∗
1K → w∗

2K: the first map is
an isomorphism

1⊗ 1⊗ (y2
2)

∗π∗
134μ

−1
2 : w∗

1(y
∗
1L1 ⊗ z∗A⊗ y∗

2L2) → w∗
1y

∗
1L1 ⊗ z∗ζ∗

1A⊗ z∗y∗
2L2 ⊗w∗

2y
∗
2L2

due to (145) and two obvious relations between π134 ◦ y2
2 and y2. The second map is

an isomorphism

1 ⊗ z∗α−1 ⊗ 1 : w∗
1y

∗
1L1 ⊗ z∗ζ∗

1A ⊗ z∗y∗
2L2 ⊗ w∗

2y
∗
2L2

→ w∗
1y

∗
1L1 ⊗ z∗y∗

1L ⊗ z∗ζ∗
2A ⊗ w∗

2y
∗
2L2,

and the third map is an isomorphism

(y2
1)

∗π∗
124μ1 ⊗ 1 ⊗ 1 : w∗

1y
∗
1L1 ⊗ z∗1y∗

1L ⊗ z∗ζ∗
2A ⊗ w∗

2y
∗
2L2 → w∗

2(y
∗
1L1 ⊗ z∗A ⊗ y∗

2L2)

because of (145) and another relation between π124 ◦ y2
1 and y1.
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Proposition A.2. (K, k) is an object in the descent category Des(B, w) and κ
is a morphism in the descent category Des(B, w[2]), i.e. the isomorphism k : w∗

1K →
w∗

2K has the following two properties:

(a) k satisfies the cocycle condition w∗
13k = w∗

23k ◦ w∗
12k.

(b) k commutes with the isomorphism κ.

Proof .

(a) The cocycle conditions live over the space W
[3]
P

∼= Y1 ×M Z [3] ×M Y2 which

comes with two projections y4
i : W

[3]
P → Y

[4]
i for i = 1, 2, and one projection

z : W
[3]
P → Z [3]. I write the cocycle condition as a diagram

∗
w∗

12k

∗

w∗
13k∗

w∗
23k

∗ ∗

(149)

and plug in the definition (148) of k. Then I obtain

∗
1⊗1⊗(y4

2)∗π∗
124μ2

∗

1⊗1⊗(y4
2)∗π∗

134μ−1
2

∗

1⊗z∗ζ∗12α⊗1

∗

∗

(y4
1)∗π∗

123μ−1
1 ⊗1⊗1

∗

1⊗1⊗(y4
2)∗π∗

234μ2

∗

(y4
1)∗π∗

124μ1⊗1⊗1

1⊗z∗ζ∗13α

∗

1⊗z∗ζ∗23α⊗1

∗
(y4

1)∗π∗
134μ1⊗1⊗1

(150)

I can pull the arrow with μ2 on the left hand side to the top and the one with
μ−1

1 to the bottom, because they act on different factors of the tensor products
than the arrows with α. Then I apply the associativity axiom (G2) of the bundle
gerbe G1 on three arrows in the bottom, and the one for the bundle gerbe G2

on three arrows in the top. I end up with the diagram

∗
1⊗1⊗(y4

2)∗π∗
123μ2⊗1

∗

∗

1⊗z∗ζ∗12α⊗1⊗1

∗
1⊗(y4

1)∗π∗
234μ1⊗1⊗1

1⊗1⊗z∗ζ∗23α⊗1

∗

1⊗z∗ζ∗13⊗1 (151)

which is nothing but the diagram from axiom (SM2) for α, pulled back along

z : W
[3]
P → Z [3]. So it commutes.
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(b) Note that the descend condition (24) for morphisms lives over W [2] ×P [2] W [2],
namely

a∗
1(y

∗
1L1 ⊗ ω∗

2K)
a∗
1κ

1⊗f∗
2 k

a∗
1(ω

∗
1K ⊗ y∗

2L2)

f∗
1 k⊗1

a∗
2(y

∗
1L1 ⊗ ω∗

2K)
a∗
2κ

a∗
2(ω

∗
1K ⊗ y∗

2L2)

(152)

Here a1 and a2 are the projections into the two factors. Because the fibre product
is over P [2] one obtains canonical projections fi = (ωi, ωi) : W [2] ×P [2] W [2] →
W

[2]
P and the relations yi ◦ a1 = yi ◦ a2 and ωi ◦ aj = wj ◦ fi so that the diagram

is well-defined.

Again, I use the definitions of κ and k. For simplicity, I suppress the canonical
projections to Y

[6]
1 and to Y

[6]
2 . Then I obtain the following diagram:

∗

1⊗1⊗1⊗⊗π∗
246μ−1

2

π∗
123μ1⊗1⊗1

∗
π∗
134μ−1

1 ⊗1⊗1
∗

1⊗a∗
1z∗α⊗1

∗
1⊗1⊗π∗

126μ2
∗

1⊗1⊗π∗
156μ−1

2 ∗

1⊗1⊗π∗
135μ−1

2 ⊗1

∗

1⊗1⊗f∗
2 z∗α−1⊗1

∗

1⊗f∗
1 z∗α−1⊗1⊗1

∗

1⊗π∗
236μ1⊗1⊗1

∗

π∗
135μ1⊗1⊗1⊗1

∗
π∗
126μ1⊗1⊗1

∗
π∗
156μ−1

1 ⊗1⊗1
∗

1⊗a∗
2z∗α⊗1

∗
1⊗1⊗π∗

146μ2
∗

1⊗1⊗π∗
356μ−1

2

∗

I permute the order of isomorphisms where it is possible since they act on
different factors of tensor products, in the way that I get the diagram:

∗

π∗
123μ−1

1 ⊗1⊗1

π∗
134μ−1

1 ⊗1⊗1
∗

1⊗1⊗f∗
2 z∗α⊗1

∗
1⊗a∗

1z∗α⊗1
∗
1⊗1⊗1⊗⊗π∗

246μ−1
2∗

1⊗1⊗π∗
126μ2

∗

1⊗1⊗π∗
156μ−1

2

∗
1⊗π∗

236μ1⊗1⊗1

∗

1⊗1⊗π∗
135μ−1

2 ⊗1

∗
π∗
126μ1⊗1⊗1

∗
1⊗1⊗π∗

356μ2

∗
π∗
156μ−1

1 ⊗1⊗1
∗
π∗
135μ−1

1 ⊗1⊗1⊗1
∗

1⊗a∗
2z∗α⊗1

∗
1⊗f∗

1 z∗α⊗1⊗1
∗

1⊗1⊗π∗
146μ2

∗

Due to the relations

z ◦ f2 = ζ24 ◦ z and z ◦ a1 = ζ12 ◦ z (153)

and

z ◦ f1 = ζ13 ◦ z and z ◦ a2 = ζ34 ◦ z (154)
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one is able to apply the axiom (SM1) for the isomorphism α two times, namely

(a∗
1z

∗α ⊗ 1) ◦ (1 ⊗ f ∗
2 z∗α) = (1 ⊗ π∗

124μ
−1
2 ) ◦ z∗ζ∗

14α ◦ (π∗
346μ1 ⊗ 1) (155)

(f ∗
1 z∗α ⊗ 1) ◦ (1 ⊗ a∗

2z
∗α) = (1 ⊗ π∗

134μ
−1
2 ) ◦ z∗ζ∗

14α ◦ (π∗
356μ1 ⊗ 1) (156)

After this replacement, all occurrences of the isomorphisms μ1 and μ2 disappear
by using axiom (G2) for both ones three times each. One ends up with the
equality ζ∗

14α = ζ∗
14α. So the diagram commutes.

Now the proof of Theorem A.1 is completed with the following proposition.

Proposition A.3. Let K = (K,κ) : G1 → G2 be a stable isomorphism with
covering ω : W → M , let p : P → M be another surjective submersion with a map
w : W → P such that ω = p ◦ w and let k : w∗

1K → w∗
2K be an isomorphism of

vector bundles over W
[2]
P such that (K, k) is an object and κ is a morphism in the

descend category Des(B, w). Then,

(a) D∗
w(K) := (D∗

w(K, k), D∗
w(κ)) is a stable isomorphism with covering P .

(b) D∗
w(K) and K are isomorphic objects in Hom(G1,G2).

Proof . (a) The axioms for D∗
w(K) and K are equivalent because B is a stack and

hence D∗
w is an equivalence of categories. (b) It is easy to construct a morphism

β : D∗
w(K) ⇒ K by choosing the covering W with maps id : W → W to the covering

of K and w : W → P to the covering of D∗
w(K). Then the stack B provides an

isomorphism β : w∗D∗
w(K, k) → K satisfying the axiom (MSM).
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[GR02] K. Gawȩdzki and N. Reis, WZW Branes and Gerbes, Rev. Math. Phys.
14(12), 1281–1334 (2002), hep-th/0205233.
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