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Graeme Segal ('01):
» configuration space for strings in X: LX := C>®(S1, X).
» gauge field: hermitian line bundle £ with connection over LX.
» define a 2d functorial topological field theory, i.e. a functor

F : Bordy(X) — Vectc

in the following way:

additional data provided by a
“string connection”




What exactly is a “string connection”?
> problem can be reduced to pairs of pants.

> pairs of pants can be reduced to “thin” pairs of pants:

» Consider PX := C*([0,1], X) and ev : PX — X x X, form the
n-fold fibre product

PXI = PX Xy x PX Xxxx - Xxxx PX

» PXP = [X, and PXB!l is the space of thin pairs of pants.

A “string connection” is something defined over PX[I.



Definition: (Brylinski '93, Stolz-Teichner '03, KW '09)
Let £ be a hermitian line bundle with connection over LX. A fusion

product on L is a smooth family of unitary isomorphisms

A%’Yzf‘/a : ﬁf(’h,"/z) ® E@(“/zfn) - EZ("/I/YS)

for (71,72,73) € PXEB!, where ¢ : PXI2l — [X. Moreover, we require:
(a) associativity over PX!

(b) compatibility with the connection

In the construction of a field theory, (a) and (b) assure that the field

theory does not depend on the choice of cutting, i.e. of combinations of
fusion products and parallel transport.



Segal: string connection corresponds to a gerbe connection on X.

Indeed, there is a functor

Hermitian line
bundles over LX with Regression Buhndle gerb.es
superficial connection with connection

and fusion product over X
To (£, ) it assigns the following bundle gerbe:

oL A

L

PX =— P, X =— p xBI

evy l

X

Curving B € Q2(P,X): requires superficial connection on L.



Brylinski '93: “transgression” functor in the opposite direction:

trgr

@(X)

C yaée C:}/ﬁre

Hermitian line

Q2(LX)

Bundle gerbes .
. & . bundles with
with connection .
over X connection
over LX

Dixmier-Douady class

1st C}ern/class

H2(LX, Z)

H3(X, Z)

trgr

Here, ev : LX x S — X and trgr ::/ ev®.
sl



Theorem (KW '09)
Regression and transgression functors establish an equivalence:
Bundle gerbes Hermitian line bundles over £
with connection & ¢ with superficial connection and
over X symmetrizing fusion product

Remark: equivariance under loop rotation is built in.

Further versions of this equivalence:

(a) without connections (KW '11)

(b) multiplicative (KW '15)
~> approach the representation theory of a loop group LG via
finite-dimensional (higher-categorical) geometry over G



Hermitian line bundles over
LX with “string connection”
(i.e. superficial connection and
symmetrizing fusion product)

Segal’s construction Regression/Transgression
Smooth 2d
) Bundle gerbes
functorial . .
. . with connection
topological field Bunke-Turner over X

theories over X -Willerton '03
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Informal overview:

{ Geometric spin }
structures on LX

Regression / Transgression

Anomaly
cancellation in { Geometric string }
supersymmetric Stolz-Teichner- structures on X
sigma models program

Terminology: geometric ¥-structure := ¥-structure + ¥-connection



Killingback ('87):

>

>

>

configuration space for strings in X: LX = C>(S!, X).
supersymmetric theory: spin structure on LX

If FX is the frame bundle of X, then the frame bundle of LX is
LFX, i.e.
FLX = LFX.

If X is a spin manifold, then FX is a principal Spin(n)-bundle and
FLX is a principal LSpin(n)-bundle.

Definition (Killingback '87, Coquereaux-Pilch '98, Manoharan '02):

Let X be an n-dimensional spin manifold. A spin structure on LX is a lift
of the structure group of FLX along the universal central extension

—

1 — U(1) — LSpin(n) — LSpin(n) — 1.

A spin connection is an accompanying lift of the looped Levi-Civita
connection.



A spin manifold X is called string if 1p;(X) = 0.

Theorem (McLaughlin '92):
» X is string => LX is spin
> " <= " holds if X is 2-connected.

Stolz-Teichner ('03):

> Observation: 3p;(X) € H*(X,Z) is the “level” of a Chern-Simons
field theory over X.

> Detect and parameterize vanishing of 1p;(X) by trivializations of
that Chern-Simons theory.

Fcs

Bords(X) 3-Vectc



Another observation: %pl(X) € H*(X,Z) is the characteristic class of a
bundle 2-gerbe over X, the Chern-Simons 2-gerbe CS(X).

> it can be constructed explicitly (Carey et al. '05):

basic gerbe G multiplicative
Meinrenken '02 bj‘:s’c structure on Gpasic

|

Spin(n) Spin(n) x Spin(n)

_—

FX T FX xx FX =— FX xx FX

’

X

> it comes with a connection, whose curving is the Chern-Simons
3-form,
(ANdA) + 3 (ANTANA]) € Q3(FX).



Definition:

A string structure on a spin manifold X is a trivialization of the
Chern-Simons 2-gerbe CS(X). A string connection is a connection on
this trivialization.

Results about (geometric) string structures:
> String structures exist if and only if p;(M) = 0.

» Every string structure admits a string connection, and the space of
possible choices is affine.

» Geometric string structures have a “covariant derivative”
He Q¥X) with dH =1 (FaA Fa) = curv(CS(X)).

» Geometric string structures form a torsor over the gerbes with
connection on X, and

H—% > H+ curv(G)



Theorem (KW '15):

Transgression makes up an equivalence

superficial spin connections and

{ Geometric string } ~
symmetrizing fusion products

Spin structures on LX with
structures on X J

Idea of proof:

—

Brylinski transgression functor: Gpasic —= LSpin(n)

v

v

2-gerbe-version: CS(X) = S(LX) “spin lifting gerbe of LX"

By functoriality, trivializations transgress to trivializations

v

v

Trivializations of S(LX) are precisely the spin structures (Murray
'95).



Remark about the string group (Nikolaus-KW '12):

» There is an equivalence
Multiplicative ~ Lie 2-group extensions
gerbes over G - BU(1l) =T — G
Gpasic over Spin(n) = String(n)

» CS(P,G) is the lifting 2-gerbe for the problem of lifting the
structure group of a principal G-bundle along

BU(1l) — I — G.
» In particular, there is an equivalence

Stri Principal
{ tring str;ctures } ~ { String(n)-2-bundle }
on liftings of FX



superficial spin connection and

{ Spin structures on LX with }
symmetrizing fusion product

equivalent
Anomaly
cancellation in { Geometric string }
supersymmetric structures on X
sigma models



Supersymmetric sigma model:
» Riemann surface ¥ with spinor bundle S™
» For ¢ : ¥ — X, consider H, := L?(SE ® ¢* TX)
» Twisted Dirac operator Dy : Hy —> Hy (even + self-adjoint)

» Action functional (fermionic part):
/ dv exp (/ ¥, Dy1p) dvolz) = pfaffp, € Pfaff(D)|4

Anomaly! Need a trivialization of Pfaff(D).

Theorem (Freed '03): ci(Pfaff(D)) = trgr(3p1(X))

Theorem (Bunke '09): Every string connection determines a
trivialization of Pfaff(D). Its covariant derivative (w.r.t. the
Bismut-Freed connection) is trgr(H).

=> String connections cancel the anomaly for all X

(Spin connections on LX only cancel the anomaly for ¥ = T?)



Summary: string connections can equivalently be described by

» classical geometry on LX (bundles, connections, fusion products), or
by
> higher-categorical geometry over X (2-gerbes)
Open questions:
> Representation theory of String(n), the “stringor” bundle

» Index theorem for the Witten genus

» Hohn-Stolz conjecture

Thank you very much!
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